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have been used in a number of research areas including web 
mining, image classification and text mining, among others.

Semi-supervised classification methods (Zhu and Gold-
berg 2009) exploit both labeled and unlabeled data during 
their training process. The ultimate goal of any semi-super-
vised method is to take advantage of the unlabeled data in 
order to improve its generalization ability. A variety of semi-
supervised learning approaches have been proposed in the 
literature. They can be categorized as follows: (a) self-labeled 
methods (Triguero et al. 2015), (b) low-density separation 
(Chapelle et al. 2010), (c) graph-based methods (Blum and 
Chawla 2001) and (d) generative models (Nigam et al. 2000).

In the work at hand, a semi-supervised method that extends 
the local application of AdaBoost (Kotsiantis et al. 2006) by 
adding self-labeled examples in the training set is presented. 
The aim of this research work is to propose a method whose 
performance is significantly increased by using unlabeled 
data while outperforming other well-known semi-supervised 
classification methods. The proposed method has been tested 
on various standard benchmark data sets. From the obtained 
results, it has been observed that the proposed method tends 
to outperform other well-known and widely used semi-super-
vised classification methods in terms of classification accuracy.

The rest of the paper is organized as follows: In Sect. 2 
some of the most well-known semi-supervised classification 
methods are briefly reviewed. In Sect. 3 the proposed algo-
rithm is presented and analyzed. In Sect. 4 experimental results 
obtained using thirty benchmark data sets are exhibited. The 
paper ends in Sect. 5 with a synopsis and concluding remarks.

2  Related work

For completeness purposes let us briefly describe some 
related work. As mentioned in Sect. 1, one main category of 

Abstract In many real life applications, a complete labeled 
data set is not always available. Therefore, an ideal learning 
algorithm should be able to learn from both labeled and unla-
beled data. In this work a two stage local boosting algorithm 
for handling semi-supervised classification tasks is proposed. 
The proposed method can be simply described as: (a) a two 
stage local boosting method, (b) which adds self-labeled exam-
ples of unlabeled data and (c) employ them on semi-supervised 
classification tasks. Grounded on the local application of the 
boosting-by-reweighting version of AdaBoost, the proposed 
method utilizes unlabeled data to enhance it’s classification 
performance. Simulations on thirty synthetic and real-world 
benchmark data sets show that the proposed method signifi-
cantly outperforms nine other well-known semi-supervised 
classification methods in terms of classification accuracy.

1 Introduction

Supervised machine learning methods usually require a large 
number of labeled training data in order to build models with 
high predictive power and generalization ability. However, 
since the process of data labelling often requires a human 
expert, this can be time consuming and expensive. On the 
other hand, unlabeled data sets are fairly easy to obtain and 
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semi-supervised learning classification methods are the self-
labeled techniques (Triguero et al. 2015). In these methods, a 
small set of labeled instances is used in order to train a single 
classifier or an ensemble of classifiers. Then, the unlabeled 
instances are classified using the trained model. Iteratively, 
the trained learner picks some unlabeled instances based on 
the confidence of its predictions, e.g. the first instances after 
the ranking of class probability values. The classifier adds 
these instances to the training set along with their predicted 
class labels, in order to enlarge it. The new enlarged train-
ing set is used for re-training the classifier and this process 
is repeated until one or more stopping criteria are fulfilled.

One of the most simple algorithms is the Self-Training 
method (Yarowsky 1995; Riloff et al. 2003), which enlarges 
its own training set based on its predictions of unlabeled data 
without any other restrictions. The performance of the Self-
Training algorithm strongly depends on the selected newly-
labeled data at each iteration of the training procedure. 
Tanha et al. (2015) have observed that the most important 
aspect of the Self-Training procedure, in order to be success-
ful, is to correctly estimate the confidence of the predictions. 
They have conducted experiments using decisions trees as 
base learners and they have revealed that Self-Training does 
not benefit from the available unlabeled data. Furthermore, 
they have performed several modifications to the basic deci-
sion tree learner in order to produce better probability esti-
mates and they have concluded that their modifications, as 
well as the ensembling of decision trees, benefit the Self-
Training procedure. Nonetheless, classification of noisy 
instances as confident instances and their insertion into the 
training set can lead to wrong predictions. Furthermore, if 
the number of the labeled data is too small, it may not rep-
resent the underlying structure of the hypothesis space at all. 
Therefore, Self-Training will also fail since the initial trained 
learner will produce incorrect predictions for the unlabeled 
data. It must be noted that Self-Training cannot straightfor-
wardly be applied to Support Vector Machines because the 
confident instances might not be too informative, as most 
of them would have a significant distance from the deci-
sion boundary. Despite the above, Self-Training processes 
have been successfully applied to several classification tasks 
including natural language processing (Riloff et al. 2003), 
human action recognition (Liu and Yuen 2011), object detec-
tion from images (Rosenberg et al. 2005), motion estimation 
in dynamical systems (Kim 2011), pixel classification of 
remote sensing imagery (Maulik and Chakraborty 2011), 
intrusion detection (Li et al. 2010), brain-computer interface 
system (Li et al. 2008) and face recognition (El Gayar et al. 
2006), among others.

SETRED (Li and Zhou 2005) is a Self-Training method 
that incorporates data editing in order to learn actively from 
the self-labeled examples. In each Self-Training iteration, 
SETRED does not accept all the self-labeled examples that 

may be highly noisy. Instead, it identifies the possibly misla-
beled objects from the self-labeled objects by testing a prede-
fined null hypothesis with the local cut edge weight statistic 
associated with each self-labeled object. If the test indicates 
a left rejection, the object is regarded as a good object, oth-
erwise it is possibly associated with a wrong label, which 
should be kept from being added to the learner’s training set.

Co-Training (Blum and Mitchell 1998; Nigam and Ghani 
2000) is based on the strong assumption that the feature space 
can be divided into two conditionally independent subsets 
and each subset is sufficient to train a good classifier. Thus, 
each classifier is trained using each subset, respectively. 
Initially, only labeled instances are used for training. Itera-
tively, each classifier makes predictions for a few unlabeled 
instances of its sub-dataset and the most confident predictions 
of each classifier are inserted into the training set of the other 
classifier. This process continues for a predefined number 
of iterations until stopping criteria are fulfilled. Didaci et al. 
(2012) have estimated that the Co-Training performance 
depends on the size of the labeled training set. Results on 
real data sets have shown that co-training’s performance does 
not seem to be affected greatly by the training set size. In 
other words, co-training can work even with very few labeled 
examples per class (Blum and Mitchell 1998).

While Co-Training algorithms do not examine the reli-
ability of labels provided by each classifier, unsuccess-
ful labelling in a small number of instances can lead to 
decreased accuracy of subsequent learners. To overcome this 
drawback, Sun and Jin (2011) have proposed the robust co-
training. In this work, canonical correlation analysis (CCA) 
has been used to examine predictions on the unlabeled data 
and only predicted labels consistent with the result of CCA 
have been included into the training set.

Additionally, the selection of the most confident pre-
dictions in each iteration relies on their class probability 
estimates. In some cases, when unlabeled instances have 
the same class probability values, they will be chosen at 
random. In order to choose these instances, Wang et al. 
(2008) have used the class membership probabilities of 
each instance with a distance metric between unlabeled and 
labeled instances. Between two instances with the same class 
membership probability, the one with the smallest distance 
is chosen to be selected with greater chance.

To overcome the strong assumptions of co-training Tanha 
et al. (2011) have proposed a method, named ensemble-co-
training, that uses an ensemble of classifiers for co-training 
rather than feature subsets. The ensemble is used to estimate 
the probability of incorrect labeling and this is used with a 
theorem by Angluin and Laird (1988) to obtain a degree for 
deciding if adding a set of unlabeled isntances will reduce 
the error of an underlying classifier or not.

Xu et al. (2012) have proposed the DCPE co-training, 
where labeled instances are used for training two different 
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base learning algorithms. Then, each generated classifier 
independently predicts the unlabeled instances as well as 
their class membership probabilities. Unlabeled instances 
with the same prediction label but with different, most prob-
able, class probabilities by each classifier are inserted into 
the training set of the classifier which exhibits the lower 
probability value. Next, each classifier is retrained and this 
process is repeated until stopping criteria are fulfilled.

CoForest (Li and Zhou 2007) uses unlabeled instances to 
boost the performance of the model that is trained from the 
labeled instances. By extending the co-training procedure, 
it exploits the power of Random Forest to tackle the prob-
lem of selecting confident unlabeled instances to label and 
generate the final hypothesis. Deng and Guo (2011) have 
proposed a variant of Co-Forest algorithm named ADE-co-
forest, which is based on a data editing process which detects 
and removes probable mislabeled instances during iterations.

Hady and Schwenker (2008) have proposed a co-training 
by committee framework. In their work, an initial committee 
was built with the available labeled instances. Three ensem-
ble methods have been used: (a) Random Subspace, (b) Bag-
ging and (c) AdaBoost, and these semi-supervised learning 
methods were named CoBagging, CoAdaBoost and CoRSM, 
respectively. In this framework, each ensemble predicts the 
label of a subset of the unlabeled data set and computes their 
class membership probabilities. Subsequently, a few of the 
most confident instances are inserted into the labeled train-
ing set and the ensemble is retrained. The process is repeated 
until a stopping criterion is fulfilled.

TriTraining algorithm (Zhou and Li 2005) extends the 
Co-Training method using three base classifiers which itera-
tively assign labels to unlabeled instances. In each round, 
an unlabeled instance is labeled for a base classifier, when 
the other two classifiers agree on the label prediction of an 
unlabeled instance. TriTraining does not put any constraint 
on which supervised learning algorithm is chosen as the base 
learner, neither assumes that a feature split exists. Therefore, 
its applicability is quite general. Guo and Li (2012) have 
proposed an improved TriTraining algorithm (im-tri-train-
ing) that addresses some issues which exist in TriTraining, 
such as unsuitable error estimation.

RASCO (Wang et al. 2008) uses random feature subsets in 
order to train different classifiers. An unlabeled instance is 
assigned to a label, based on the combination of the predic-
tions of the classifiers that are trained on the different feature 
subsets. Rel-RASCO algorithm (Yaslan and Cataltepe 2010) 
generates relevant random subspaces by using relevance 
scores of features which are collected using the mutual infor-
mation between features and class labels, instead of using 
random feature subspaces.

Aridas and Kotsiantis (2015) have proposed a hybrid tech-
nique that uses two models that are trained using Random For-
ests (Breiman 2001) and Support Vector Machines (Cristianini 

and Shawe-Taylor 2000), respectively. Initially, both models 
are trained with the available labeled instances. Afterwards, 
iteratively, both models are evaluated using cross-validation 
in the labeled data and the best performer is selected to label 
the most confident instances from the remaining unlabeled set. 
This process is repeated until all instances from the unlabeled 
set have a label. In their implementation, a fixed number of 
iterations has been used and thus, the number of instances that 
have been labeled in each iteration have been dynamic.

Most of the proposed self-labeled methods (Triguero 
et al. 2015) implement an incremental addition mechanism 
in order to enlarge the initially labeled data set. The main 
disadvantage of this approach is that in the case where misla-
beled instances are added, the latter cannot be removed from 
the enlarged data set. So, in the next iterations the underlying 
classifier(s) would be trained using noisy instances and that 
could lead to a decrement of the performance. The proposed 
approach belongs to the category of the amending methods 
that appear to be a solution to the main weakness of the 
strictly incremental methods (Triguero et al. 2015).

3  Proposed method

Let us recall that Boosting constructs an ensemble of clas-
sifiers by subsequently tweaking the distribution of the 
training set based on the accuracy of the previously cre-
ated classifiers. There are several boosting variants. These 
methods assign a weight to each training instance. Initially, 
all instances are equally weighted. In each iteration a new 
classification model, named base classifier, is created using 
the base learning algorithm. The creation of the base classi-
fier has to consider the weight distribution. Then, the weight 
of each instance is adjusted, depending on the accuracy of 
the prediction of the base classifier for that instance. Thus, 
Boosting attempts to construct new classifiers that are able to 
better classify the “hard” instances for the previous ensem-
ble members. The final classification is obtained from a 
weighted vote of the base classifiers. AdaBoost (Freund and 
Schapire 1996) is the most well-known boosting method.

Kotsiantis and Pintelas (2004) have applied local boost-
ing with AdaBoost using Decision Stumps (Iba and Langley 
1992) and OneRs (Holte 1993) as base classifiers and they 
have shown that their approach outperforms other ensembles 
with the same learners as base classifiers, in most of the cases. 
Their approach is based on the idea of local learning algo-
rithms (Bottou and Vapnik 1992). For each testing pattern their 
approach performs the following steps: (a) select few training 
patterns located in the near of the testing pattern, (b) apply 
boosting to a base classifier only with these few examples, and 
(c) apply the resulting ensemble to the testing pattern itself. On 
the other hand, Zhang and Zhang (2008) have shown empiri-
cally that their local boosting-by-resampling technique seems 
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to be more robust to noise than the standard AdaBoost. The 
success of the local boosting, as any other “lazy” algorithm, 
depends on the available training data set. In Aridas et al. 
(2016), the authors have achieved to enhance the performance 
of local boosting by using a data editing technique (Garcia 
et al. 2012) in the whole available training data set.

By assuming that the limited training labeled set is noise 
free and that if two points x1, x2 are close together, then their 
corresponding outputs y1, y2 are also close together, we pro-
pose a modification of the algorithm that has been proposed 
by Aridas et al. (2016) in order to solve semi-supervised 
classification tasks.

In the supervised case the local boosting needs a high 
quality training set in order to locate the neighbors for each 
testing pattern. The intention of the proposed method is to 
add high quality patterns from unlabeled data by using a 
Logistic Regression (LR) (Freedman 2009) model. Spe-
cifically, given a labeled set L and an unlabeled set U, a 
LR model is trained using the L, in one-vs-rest fashion in 
order to handle the multiclass case. Then the LR model is 
used to generate class probabilities for each instance x in 
the set U. All instances that have max class membership 
probability higher than a predefined acceptance threshold 
T take the label of the class with the highest probability 
and then they construct a new set L̄. Since the set L̄ may 
include mislabeled examples, a prototype reduction is per-
formed, by removing the newly labeled examples that do 
not agree with the majority of their K1 neighbors. So, the 
main difference with the method that has been proposed 
by Aridas et al. (2016), is that the initial labeled data will 

never be removed. This complies with the assumption of a 
noise free initial data set. After the reduction of the newly 
labeled examples in L̄, L and L̄ are concatenated and the 
new set is stored in order to be used for the predictions. In 
the classification phase, for each test instance, the K2 near-
est neighbors, from L and L̄, are located and a boosting 
ensemble is yielded using only the K2 instances. This local 
ensemble is used to predict the class of the test instance.

The proposed Hybrid Local Boosting (HLB) method 
is illustrated in the process diagram of Fig. 1, while the 
entire algorithmic procedure is presented in Algorithm 1.

Algorithm 1 The proposed Hybrid Local Boosting (HLB) Algorithm.
parameters

Boosting Iterations N
Learning Rate R
Distance Metric M
Neighbors K1
Neighbors K2
Threshold T

procedure Training(Labeled Set L, Unlabeled Set U)
Train a Logistic Regression model using L
Generate class probabilities for the U using the trained model
Discard the objects that have max class probability below T
Construct a new set L̄ with the remained objects
for ∀ x ∈ L̄ do

Find the K1 nearest neighbors using M
if the label of x does not agree with the majority of the K1 then

L̄ ← L̄− {x}
end if

end for
Lext ← L ∪ L̄

end procedure
procedure Classification(Test Set T )

for ∀ x ∈ T do
Find the K2 nearest neighbors of x in Lext using M
Apply AdaBoost for N iterations using the K2 of Lext
Predict the class of x using the trained ensemble

end for
end procedure

Fig. 1  The proposed hybrid 
local boosting (HLB) process 
diagram
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4  Numerical experiments

In this section, the design of the experiments as well as the 
results and the statistical analysis of the experiments are 

presented. Specifically, in Sect. 4.1 the evaluation proto-
col is described as well as the data sets that are used and 
the other semi-supervised techniques that are included in 
the comparisons are presented. In Sect. 4.2 the effect of 
the unlabeled data is discussed and analysed. While, in 
Sect. 4.3 the performance of the proposed method is com-
pared with other well-known semi-supervised methods 
using different labeled ratios.

4.1  Design of experiments

In order to evaluate the performance of the proposed 
method, a number of experiments have been conducted, 
using several data sets from different domains. Specifi-
cally, thirty data sets have been chosen from the KEEL-
dataset repository (Alcalá-Fdez et al. 2011). In Table 1 the 
name, the number of instances, the attributes as well as the 
number of different classes for each data set are exhibited.

All data sets have been partitioned using a tenfold cross-
validation. This procedure divides the instances in 10 equal 
folds. Each tested algorithm has been trained using ninefolds 
(training partition) and the fold left out (testing partition) has 
been used for evaluation of the algorithm in terms of classifi-
cation accuracy. This has been repeated ten times. Then the 
average accuracy across all trials has been computed. Each 
training partition has been divided into two parts: labeled 
and unlabeled sets. The impact of the amount of labeled 
data has been examined under the labeled ratio of 10, 20 
and 30%, respectively, when the training set is partitioned.

Also, the proposed method is compared with nine 
other state-of-the-art algorithms as they are imple-
mented with the KEEL (Alcalá-Fdez et al. 2008) soft-
ware package. Specifically, the proposed method is 
compared with Self-Training (ST), Co-Training (CT), 
SETRED, TriTraining(TT), CoForest (CF), ADE-
CoForest (ADECF), CoBagging (CB), RASCO (R) and 
Rel-RASCO(RR) with a Decision Tree (C4.5) (Salzberg 
1994) as a base learner. In Table 2 the parameters for each 

Table 1  Features of the data sets used in the experiments

Data set #Attributes #Instances #Classes

Australian 14 690 2
Banana 2 5300 2
Breast 9 277 2
Bupa 6 345 2
Chess 36 3196 2
Contraceptive 9 1473 3
Dermatology 34 358 6
Flare 11 1066 6
German 20 1000 2
Heart 13 270 2
Iris 4 150 3
Marketing 13 6876 9
Mushroom 22 5644 2
Nursery 8 12960 5
Page-blocks 10 5472 5
Penbased 16 10992 10
Phoneme 5 5404 2
Pima 8 768 2
Ring 20 7400 2
Satimage 36 6435 7
Sonar 60 208 2
Spambase 57 4597 2
Splice 60 3190 3
Texture 40 5500 11
Tic-tac-toe 9 958 2
Titanic 3 2201 2
Twonorm 20 7400 2
Vehicle 18 846 4
Wine 13 178 3
Wisconsin 9 683 2

Table 2  Parameters used in 
the compared semi-supervised 
methods

Method Parameters

Self-Training (ST) MAX_ITER = 40
Co-Training (CT) MAX_ITER = 40, Initial unlabelled pool = 75
SETRED MAX_ITER = 40, Threshold = 0.1
TriTraining (TT) C4.5
CoForest (CF) Number of classifiers = 6, Threshold = 0.75
Rasco (R) MAX_ITER = 40, Number of views/classifiers = 30
Co-Bagging (CB) MAX_ITER = 40, Committee members = 3, Pool U = 100
Rel-Rasco (RR) MAX_ITER = 40, Number of views/classifiers = 30
ADE-CoForest (ADECF) Number of classifiers = 6, Threshold = 0.75, Neighbors k 

= 3, Minimum number of neighbors=2
C4.5 Pruned tree, confidence = 0.25, 2 examples per leaf
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compared method are presented. For the proposed method 
the parameters have been N = 25, R = 1.0 M = Euclidean, 
K1 = 5, K2 = 25, T = 0.8 and for the AdaBoost a Deci-
sion Stump (Iba and Langley 1992) has been used as base 
classifier.

4.2  Using only labeled data

The aim of our contribution is to propose a method that 
successfully utilizes unlabeled data in order to produce a 
model that performs better than a model that uses only the 
initially labeled data. In the case where there aren’t any 
unlabeled data available during the training, the proposed 
method resorts to the local boosting approach as is described 
in Kotsiantis and Pintelas (2004). In Table 3 the performance 
of the proposed method under different ratios of labeled data 
is presented.

In column L, the classification accuracy of the method 
using only the initial labeled data is reported, while in col-
umn L + U, the performance of the proposed method using 
labeled and unlabeled data at the same time is reported. 
Column Impr. show the percentage change of the perfor-
mance by using unlabeled data. It is clear that under the 
labeled ratio of 10% the proposed method successfully 
utilizes unlabeled data since it achieves a better perfor-
mance in 22 out of the 30 data sets. This number increases 

Table 3  Performance 
percentage change between 
a model, based on the 
proposedapproach, that exploits 
unlabeled data and a model that 
uses only the labeled data under 
different labeled ratios

Bold values indicate positive improvement

Labeled ratio 10% 20% 30%

Data set L + U L Impr. L + U L Impr. L + U L Impr.

Australian 84.64 78.84 7.35 84.49 78.70 7.37 84.35 82.75 1.93
Banana 85.91 86.19 −0.33 87.70 87.60 0.11 87.98 88.02 −0.04
Breast 69.56 70.87 −1.84 73.31 67.45 8.69 72.64 63.88 13.72
Bupa 58.22 59.23 −1.69 60.07 57.97 3.62 61.33 64.02 −4.21
Chess 95.37 93.12 2.42 96.46 96.09 0.39 97.40 97.62 −0.23
Contraceptive 47.92 45.35 5.68 48.26 46.84 3.04 49.35 47.59 3.72
Dermatology 80.95 75.16 7.7 91.10 86.00 5.93 92.13 91.30 0.91
Flare 69.98 71.20 −1.71 73.17 73.55 −0.52 72.98 72.24 1.03
German 71.10 68.40 3.95 70.80 68.10 3.96 70.80 67.00 5.67
Heart 78.89 72.59 8.67 78.15 75.93 2.93 79.26 69.26 14.44
Iris 91.33 90.67 0.74 94.00 90.67 3.68 93.33 92.67 0.72
Marketing 27.66 27.95 −1.07 28.45 28.66 −0.76 30.77 29.07 5.85
Mushroom 99.77 99.80 −0.04 99.95 99.95 0 99.96 99.96 0
Nursery 90.65 89.21 1.61 91.57 91.79 −0.24 92.75 93.29 −0.59
Page-blocks 95.19 95.01 0.19 95.47 95.58 −0.11 95.72 95.91 −0.19
Penbased 95.46 95.10 0.38 97.08 97.15 −0.07 97.60 97.82 −0.22
Phoneme 80.79 81.35 −0.68 83.62 83.36 0.31 84.10 84.20 −0.11
Pima 68.35 62.36 9.62 72.78 66.80 8.96 72.40 73.06 −0.9
Ring 81.58 78.96 3.32 82.53 80.72 2.24 83.35 81.54 2.22
Satimage 85.41 84.65 0.9 86.26 86.26 0 87.44 87.23 0.25
Sonar 71.10 67.21 5.77 77.33 70.12 10.29 77.88 73.95 5.31
Spambase 89.97 85.73 4.95 90.91 87.27 4.16 91.04 88.86 2.45
Splice 82.23 80.66 1.94 84.51 83.70 0.97 85.02 83.79 1.46
Texture 92.36 88.47 4.4 95.20 92.09 3.38 96.11 94.47 1.73
Tic-tac-toe 79.64 72.97 9.15 87.99 75.15 17.08 92.48 76.93 20.21
Titanic 77.56 77.69 −0.18 78.69 78.33 0.46 78.83 78.87 −0.06
Twonorm 95.07 92.22 3.09 95.19 93.58 1.72 95.14 93.70 1.53
Vehicle 59.13 58.03 1.89 64.67 63.02 2.62 65.49 65.50 −0.01
Wine 88.76 85.29 4.06 93.79 82.58 13.57 97.75 89.90 8.72
Wisconsin 95.92 94.32 1.7 96.06 94.29 1.88 96.65 95.63 1.07

Table 4  Results obtained by the Wilcoxon tests

VS (%) R+ R− Z Asymptotic p value

10 411.0 54.0 −3.673 0.000223
20 431.5 33.5 −4.122 0.000041
30 362.5 72.5 −3.136 0.001514



57Evolving Systems (2019) 10:51–61 

1 3

when the labeled ratio is 20% since the proposed approach 
performs equally or better in 25 out of 30 data sets. This 
performance is decreased when the labeled ratio reaches 
the level of 30%, but even so, the unlabeled data helps the 
local boosting to achieve a higher performance in most of 
the cases.

However, the results, of the pairwise comparisons using 
the Wilcoxon (1945) test in Table 4 indicate that the pro-
posed approach performs significantly better1 if unlabeled 
data are present.

4.3  Comparisons with other semi‑supervised methods

In this Subsection, the performance of the proposed method 
is reported and analyzed against other state-of-the-art self-
labeled techniques.

Tables 5, 6 and 7 show that the hypotheses generated 
by the proposed method are apparently better for all the 
labeled ratios since the proposed method algorithm has 
the best accuracy score in most of the cases. According to 
Demšar (2006) and Trawiński et al. (2012), non-parametric 
tests should be preferred instead of parametric ones in the 
context of machine learning problems, since they do not 
assume normal distributions or homogeneity of variance, 
especially when the number of the test cases is less than 
30. Thus, in order to validate the significance of the results, 
the Friedman test (Demšar 2006), which is a rank-based 
non-parametric test for comparing several machine learning 
algorithms on multiple data sets, has been used, having as 
control method the proposed algorithm. The null hypothesis 
of the test states that all the algorithms perform equiva-
lently and therefore their ranks should be equal. The average 
rankings, according to the Friedman tests for the different 
labeled ratios, are presented in Table 8.

Table 5  Classification accuracy 
under the labeled ratio of 10%

Bold values indicate superior performance

Data set Proposed ST CT SETRED TT CF R CB RR ADECF

Australian 84.64 82.75 83.48 80.43 84.49 84.06 76.52 82.75 77.39 83.33
Banana 85.91 84.79 84.81 86.38 84.81 52.7 84.94 85.53 84.26 55.21
Breast 69.56 72.16 67.74 68.35 72.16 73.39 70.82 72.52 69.39 71.96
Bupa 58.22 53.92 57.39 53.39 57.42 58.51 58.27 61.19 57.19 55.38
Chess 95.37 95.43 95.15 81.04 95.78 94.4 95.18 95.43 94.74 83.54
Contraceptive 47.92 48.86 44.6 41.48 48.13 48.53 46.57 48.27 43.85 43.86
Dermatology 80.95 85.62 84.29 91.82 88.16 90.47 37.59 87.6 37.94 85.65
Flare 69.98 72.14 57.42 64.45 71.58 40.24 58.63 71.4 60.89 36.49
German 71.1 70.6 69 66.6 71.7 68.6 70.50 71.1 69.10 68.8
Heart 78.89 67.78 70 74.44 71.48 69.26 69.26 70.37 65.19 78.52
Iris 91.33 84 84.67 91.33 72.67 93.33 52.00 80 60.67 92
Marketing 27.66 28.45 28 26 26.94 29.23 27.07 27.06 26.49 29.75
Mushroom 99.77 99.66 99.68 99.45 99.55 90.84 99.41 99.54 99.38 90.78
Nursery 90.65 90.64 90.34 81.01 90.39 38.09 62.58 90.06 55.78 38.09
Page-blocks 95.19 95.23 94.92 93.59 95.61 95.85 90.97 95.67 91.26 94.02
Penbased 95.46 89.16 89.57 97.78 90.27 95.51 86.69 90.49 87.44 95.81
Phoneme 80.79 77.7 76.52 80.46 77.7 80.07 76.94 78.89 76.72 78.96
Pima 68.35 66.43 67.04 65.65 65.64 66.27 66.28 63.42 59.65 67.87
Ring 81.58 83.96 83.66 66.91 85.42 88.23 82.14 85.82 81.36 61.04
Satimage 85.41 80.45 80.56 85.7 82.24 86.0 77.84 82.05 77.51 85.8
Sonar 71.1 64.33 58.19 66.33 70.19 75.5 58.12 70.14 60.07 62.45
Spambase 89.97 86.69 88.84 82.81 88.1 91.86 87.14 89.51 87.16 85.86
splice 82.23 82.66 83.1 69.97 82.54 50.66 79.84 82.48 79.62 48.43
Texture 92.36 83.05 82.89 95.13 85.24 90.65 77.75 85 78.31 91.22
Tic-tac-toe 79.64 71.08 69.31 72.55 70.88 59.71 70.98 70.35 68.38 62.53
Titanic 77.56 77.51 77.83 64.02 77.65 70.65 77.24 78.37 77.69 61.88
Twonorm 95.07 81.36 80.85 93.58 86.16 89.89 79.86 85.97 81.08 91.64
Vehicle 59.13 57.92 57.47 58.28 61.94 61.24 48.23 60.3 47.87 57.09
Wine 88.76 74.05 80.75 94.38 82.03 85.88 55.98 78.66 58.46 88.73
Wisconsin 95.92 90.93 90.64 94.78 93.12 93.58 86.15 92.84 86.87 95.63

1 Based on negative ranks
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The p-value (p < 10−6) of the Friedman tests indicates 
that the null hypothesis has to be rejected. So, there is at 
least one method that performs statistically different from 
the proposed method. With the intention of investigating 
the aforementioned, the post hoc procedure that is pro-
posed by Li (2008) is used. Tables 9, 10 and 11 agree that 
the proposed algorithm performs significantly better almost 
than any compared algorithm, in most of the cases.

5  Conclusion

In this research work, a two-stage local boosting algo-
rithm for handling semi-supervised classification tasks 
has been presented. Experiments on several standard 
benchmark data sets under different labeled ratios (10, 20 

and 30%) show that the proposed method can take advan-
tage of the presence of unlabeled data and significantly 
improve it’s performance, especially when the available 
labeled data are very few. Also, it has been performed 
an in depth comparison with other well-known semi-
supervised classification techniques and the results show 
that the proposed method exhibits the best performance 
in most of the cases.

A drawback of the proposed method is that for each test 
instance a local model is built and that it can be time con-
suming. A possible improvement could be to introduce a 
feature selection step in order to compact further the training 
data. The effect of the feature selection and the application 
of the proposed method in the multi-label classification are 
issues that deserve further study.

Table 6  Classification accuracy 
under the labeled ratio of 20%

Bold values indicate superior performance

Data set Proposed ST CT SETRED TT CF R CB RR ADECF

Australian 84.49 85.8 83.77 83.04 85.22 84.2 76.52 83.62 77.39 85.94
Banana 87.7 88.04 87.43 86.91 87.36 54.11 84.94 88.04 84.26 55.17
Breast 73.31 71.56 72.27 67.88 72.25 72.65 70.82 72.24 69.39 68.86
Bupa 60.07 60.55 60.55 56.55 61.99 60.23 58.27 60.26 57.19 57.73
Chess 96.46 97.78 97.59 84.89 97.81 95.06 95.18 97.78 94.74 88.33
Contraceptive 48.26 47.79 50.44 43.79 48.81 49.42 46.57 48.06 43.85 46.1
Dermatology 91.1 91 87.9 94.67 92.14 92.44 37.59 91.86 37.94 93.85
Flare 73.17 72.8 68.97 66.6 72.7 41.56 58.63 71.76 60.89 39.97
German 70.8 69.7 69.9 66.2 68.4 68.4 70.50 71.2 69.10 69.3
Heart 78.15 75.19 75.56 77.41 79.26 72.96 69.26 74.81 65.19 75.19
Iris 94.0 89.33 89.33 92 88 94 52.00 86.67 60.67 91.33
Marketing 28.45 28.91 28.98 26.06 28.44 29.15 27.07 28.7 26.49 30.64
Mushroom 99.95 99.91 99.91 99.84 99.89 90.96 99.41 99.89 99.38 90.86
Nursery 91.57 92.35 92.6 83.27 92.58 38.42 63.25 92.35 59.42 38.42
Page-blocks 95.47 96.02 96.09 94.48 96.11 95.85 90.64 96.13 91.14 94.44
Penbased 97.08 92.41 92.47 98.71 92.87 96.56 86.69 93.7 87.44 97.15
Phoneme 83.62 78.39 80.24 83.44 79.77 83.05 76.94 82.44 76.72 81.57
Pima 72.78 68.1 68.74 63.69 69.39 71.08 66.28 70.84 59.65 68.62
Ring 82.53 86.58 86.3 70.07 87.95 89.26 82.14 89.18 81.36 67.55
Satimage 86.26 82.38 82.61 87.4 83.53 87.24 77.84 84.1 77.51 86.87
Sonar 77.33 66.36 63.36 70.12 66.31 74.48 58.12 65.86 60.07 67.24
Spambase 90.91 89.12 89.08 85.29 89.41 93.08 87.14 89.6 87.16 88.38
Splice 84.51 88.34 87.93 69.78 88.43 52.13 79.84 88.75 79.62 49.66
Texture 95.2 86.69 86.31 97.13 89.29 93.53 77.75 88.4 77.40 93.47
Tic-tac-toe 87.99 75.68 72.13 76.21 75.05 60.65 70.98 72.86 68.38 65.24
Titanic 78.69 78.24 78.24 64.07 78.15 72.29 77.24 78.28 77.69 64.38
Twonorm 95.19 81.65 82.76 94.11 86.74 90.32 79.86 87.41 81.08 91.49
Vehicle 64.67 64.89 64.89 62.53 66.2 65.49 48.23 65.49 47.87 63.84
Wine 93.79 83.69 78.63 91.54 84.22 84.22 55.98 82.55 58.46 91.6
Wisconsin 96.06 93.43 93.43 94.63 92.53 93.59 86.15 93.6 86.87 95.06
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Table 7  Classification accuracy 
under the labeled ratio of 30%

Bold values indicate superior performance

Data set Proposed ST CT SETRED TT CF R CB RR ADECF

Australian 84.35 84.64 84.78 81.01 84.2 84.64 83.04 85.07 84.20 85.36
Banana 87.98 88.19 87.85 87 88.06 53.79 87.68 88.11 87.77 54.68
Breast 72.64 71.79 70.79 64.95 70 70.71 70.83 71.11 72.61 72.21
Bupa 61.33 58.42 61.37 58.48 58.5 64.33 62.00 61.59 61.49 57.56
Chess 97.4 98.56 98.40 86.48 98.43 96.53 98.22 98.19 98.25 89.71
Contraceptive 49.35 49.22 49.76 44.26 51.05 51.04 48.88 50.92 49.22 47.05
Dermatology 92.13 92.09 90.98 93.8 92.4 96.33 64.14 91.84 65.05 95.81
Flare 72.98 72.99 72.24 65.94 72.98 41.65 72.89 73.08 71.77 42.12
German 70.8 71.0 68.40 69.6 70.3 69.4 70.20 69.2 69.70 68.7
Heart 79.26 75.56 77.04 78.52 75.56 76.67 73.70 77.04 70.37 75.56
Iris 93.33 92 91.33 92.67 91.33 93.33 80.00 90.67 76.00 89.33
Marketing 30.77 28.72 29.44 26.83 28.93 30.1 28.55 29.42 28.71 30.39
Mushroom 99.96 99.96 99.96 99.91 99.95 91.07 99.86 99.91 99.82 91.07
Nursery 92.75 93.77 93.63 83.57 93.62 39.55 87.52 93.82 89.50 39.55
Page-blocks 95.72 96.35 96.18 94.61 96.35 96.49 92.89 96.22 93.28 94.85
Penbased 97.6 94.09 93.91 99.01 94.31 97.5 93.52 94.85 93.49 97.45
Phoneme 84.1 81.37 82.18 84.7 82.49 83.9 81.66 82.75 80.87 83.29
Pima 72.4 72.52 71.23 66.94 70.45 72.13 71.09 70.85 68.47 73.18
Ring 83.35 87.54 87.84 71.04 88.81 90.27 87.12 89.43 87.45 70.86
Satimage 87.44 82.7 84.07 88.62 84.38 88.3 83.11 85.28 83.37 88.08
Sonar 77.88 67.62 63.33 76.45 69.12 70.19 64.38 71.55 62.93 69.14
Spambase 91.04 89.99 90.52 86.95 90.73 93.1 90.04 91.17 89.99 89.82
Splice 85.02 91.66 91.76 71.54 91.57 51.54 91.47 92.01 91.16 49.56
Texture 96.11 88.91 89.71 98.05 90.55 94.96 88.13 91.15 87.67 94.64
Tic-tac-toe 92.48 76.1 74.95 79.23 76.41 63.26 76.82 77.45 75.78 65.04
Titanic 78.83 77.87 77.83 64.07 77.83 72.29 78.37 77.97 78.06 65.7
Twonorm 95.14 82.55 83.23 94.39 87.43 91.42 82.97 87.78 83.04 91.19
Vehicle 65.49 65.84 66.56 65.83 67.02 67.01 62.29 65.61 64.64 66.32
Wine 97.75 84.15 82.55 92.75 90.39 93.82 68.95 88.17 67.88 94.38
Wisconsin 96.65 94.43 94.74 95.35 95.02 94.76 94.02 94.31 92.97 95.47

Table 8  Friedman test rankings 
under the different labeled ratios

Algorithm Labeled 10% Algorithm Labeled 20% Algorithm Labeled 30%

Proposed 3.1833 Proposed 2.9833 Proposed 3.3
TT 4.2167 CB 4.1833 CB 4.3667
CB 4.3833 TT 4.25 CF 4.75
CF 4.5667 ST 4.8667 TT 4.8667
ST 5.2667 CF 4.9167 ST 5.2833
SETRED 5.6333 CT 4.9333 CT 5.5667
CT 6.0167 SETRED 5.9333 SETRED 5.9833
ADECF 6.0833 ADECF 6.1 ADECF 6.1333
R 7.4833 R 8.2 R 7.2333
RR 8.1667 RR 8.6333 RR 7.5167
Statistic 68.256364 Statistic 92.774545 Statistic 48.585455
p value <10−6 p value <10−6 p value <10−6
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