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Abstract

A method for locating and computing solutions of systems of nonlinear algebraic and/or
transcendental equations or fixed points of continuous functions is described. Our method
is based on various well-known notions of Combinatorial Topology and it utilizes evo-
lutionary programming techniques. In particular, the proposed method constructs a
Sperner simplex in the n—dimensional Euclidean space by applying an evolutionary pro-
gramming technique. Qur method converges rapidly to a solution, independently of the
initial guess, and is particularly useful, since it proceeds solely by comparing relative
sizes of the function values.

1 Introduction

Many problems require the solution of the equation F,(z) = ©", where O™ =
(0,...,0) is the origin of R* and F,, = (fi, fo,-.., fn) : D C R* —» R", is a contin-
uous nonlinear function from a domain D C R* into R*. Obviously the problem
of solving the above system is similar to the problem of computing fixed points,
i.e. the solution of the system G,(z) = F,(z) — z = O™, gives a point z* € D
such that F,(z*) = z* which, of course is a fixed point of F,. These systems
of nonlinear equations arise in a large number of applications in many scientific
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and technological fields, including mathematics, physical sciences, medicine, statis-
tics, operation research, business administration, economics, system analysis and
computer science, for which a solution (or sometimes all solutions) is of practical
significance.

Methods mainly of contraction mapping type, such as Newton’s method and re-
lated classes of algorithms [9], require the starting point to be within the immediate
vicinity of the eventual solution. The necessity of having a good approximation to
the value of an unknown solution is obviously a severe disadvantage. Furthermore,
in many cases, these methods fail, due to the nonexistence of derivatives or poorly
behaved partial derivatives. Also, Newton’s method, as well as Newton-like meth-
ods, often converge to a solution almost independently of the initial guess, while
there may exist several solutions nearby, all of which are desired for the application.
For the fractal like geometry of the basin of convergence of these methods see [2,3].

In this contribution, a new evolutionary approach is presented which combines the
effectiveness and efficiency of the Evolutionary Computation techniques [11] with
some concepts of the Combinatorial Topology, aiming to deal with the problem
of locating and computing the fixed points of a nonlinear function. Our method
proceeds solely by comparing the relative sizes of the function values. The proposed
method has been implemented and tested and the corresponding numerical results
indicate that our method is an efficient and effective one.

2 Fixed points theorems and labeling lemmas

One of the most important theorems in the field of nonlinear equations is Brouwer’s
fixed point theorem. If we rewrite a system of nonlinear equations in fixed point
form, then the theorem states that, under mild assumptions, we will have a fixed
point, i.e. a solution. This theorem has been used for many years to prove the
existence of a solution of complicated systems of nonlinear equations [5,10,15-17].

Brouwer’s fixed point theorem [4] states that: any continuous mapping F, : " —
o™ from an n-simplex ¢™ C R” into itself has at least one fixed point z*, that is
F,.(z*) = z*. A proof of Brouwer’s theorem for the simplex was given by Knaster,
Kuratowski and Mazurkiewicz [7). The Knaster, Kuratowski and Mazurkiewicz
covering lemma states that: if C;j,i € Ny = {0,1,...,n} is a family of closed
subsets of o™ satisfying the following conditions:

(1) o™ = UiENo C/,; and

(2) if 0#1CNy and J =Ny — I then Ny 0™ C Ujes Cj,

then it holds that N;ey, C; # 0, where o™ = {00 1, ... w1 vi*h L . o™} deter-
mines the sth face of ™.

Scarf and Hansen proved a lemma similar to the above lemma. In addition, an
interesting generalization of the Knaster, Kuratowski and Mazurkiewicz lemma
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has been given by Gale [6].

The Sperner lemma is the basis for a proof of the Brouwer fixed point theorem
[12,13). Before stating the Sperner lemma we give several concepts that are needed:

Let v°,v,...,v" denote the vertices of ™. A k-face of o™ determined by the
vertices v, v, ..., v** is called the carrier of a point v if v lies on this kface
and not on any subface of this k-face. A function A(v) defined on a ¢” is called a
proper labeling function if it satisfies the following conditions [1]:

a) Av) € {0,1,...,n},

b) {A(), A(vY),..., A(v")} ={0,1,...,n},

¢) If the i~face, determined by the vertices v
A(w) € {A@WM), AwM), .., AR}

Let {w® w!,...,w*} denote the vertices of a k-simplex, ¥ < n, of a simplicial

subdivision of o™. This k—simplex is said to have a complete set of labels if {\(w?),
Awh), ..., Mw®)} = {0,1,...,k} holds.

W0 it .., v% isthe carrier of v then

The Sperner’s lemma [12] states that: for any simplicial subdivision and proper
labeling function of ¢™ there is at least one n—simplex of the subdivision with a
complete set of labels.

A Sperner simplex is this n—simplex with a complete set of labels. For well-behaved
continuous functions and a fine enough simplicial subdivision, the vertices of such a
simplex approximate a fixed point or a root of the mapping. One can use Sperner’s
lemma to give a constructive proof of Brouwer’s fixed point theorem. Yoseloff
[19] proved that the Sperner’s lemma can be derived from Brouwer’s fixed point
theorem, and therefore they are equivalent.

Sperner [14] gave a very general labeling lemma that states the following: let the n—
simplex " be triangulated. Label each vertex of the simplices in the triangulation
by an integer from the set {0, 1,...,n}. Then the number of (n — 1)-simplices on
the boundary with labels {0,1,...,n — 1} is equal to the number of n—simplices in
the interior with labels {0,1,...,n}. All simplices are counted with orientation.

In this article we use the labeling function A(z) : R* — {0,1,...,n} with values
Az) =min {7 : f;(z) < z;} if the inequality holds for some %, or A(z) = 0 otherwise.

3 The proposed evolutionary approach and experimental results

In this section we present our evolutionary approach that can be applied to any
dimension. Our aim is to find a Sperner simplex by using the labeling function A
described in the previous section. Next we present a high level description of the
proposed evolutionary approach:

1) We use (n+ 1) Evolutionary Algorithms in order to find points in R* which are
labeled with all the elements of the set {0, 1, ...,n}. We have, of course, bounds
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for every z; € R

From the previous step we find n; points which can be labeled with the label
1 € Ny where Ny = {0,1,...,n}. We select a point that can be labeled with the
label 7, a point that can be labeled with the label 7, ..., and finally a point that
can be labeled with the label k£ and we check if this face satisfies the Sperner
criterion for labeling vertices. The reason for doing so is that a Sperner simplex
is a hint that this simplex may obey the Knaster, Kuratowski, Mazurkiewicz
covering lemma. In this case as we have already seen, this determines that the
simplex contains with certainty at least one fixed point.

If there is a simplex S™ which is a Sperner simplex then we apply the former
methodology for the search space defined by this simplex.

Details of the algorithm:
(1) First step of the algorithm: It is the step where the (n + 1) Evolutionary

Algorithms are used and the proper fitness function is based on the function
A. As we observe, the function A consists of a set of inequalities. The value
of A (A € Ny) depends on the nuniber of the inequalities that are satisfied.
So, we can use the sum of absolute values of the differences f;(z) — z; as the
fitness function of our Evolutionary Algorithm. In this way, the inequalities
that are satisfied are not considered at all, while the ones that are not satisfied
tend to do so. This happens because, as the value of the difference |f(z;) — ;|
decreases, the value of the fitness function decreases, too. The lower bound of
the fitness function will be zero. So, all the members of the population having
zero value for their fitness function are suitable to be labeled with the label i.

(2) Second step of the algorithm: We choose (n + 1) points labeled with different

colors in order to form a Sperner simplex.

(3) Third step of the algorithm: If we find (n + 1) points that form a Sperner sim-

plex then we can either find the n—dimensional box which contains the simplex
we have found and execute the method iteratively with the new bounds, or
specify the search space defined by the -simplex and execute Step 1 for this
space using again the new constrains that have been calculated. When the
size of the simplex is small enough we invoke the classical EA to achieve a
better approximation. Notice that a Sperner simplex does not guarantee that
a fixed point of the function is contained within it. It is only a hint of it. The
reason of using the Sperner simplex is to shrink the search space. When we
reach to an area small enough, the following EA can be applied: Its fitness
function consists of the summation of the squares of the functional value of
the 7th equation minus the value of the 7th variable.

The approach we use from the Combinatorial Topology reformulates the search
space in a simpler form which is more easily studied. Furthermore, the Evolu-
tionary Computation techniques we apply take advantage every time of all the
characteristics of the search space and result in quick convergence.

The proposed evolutionary algorithm has been implemented and tested and its
performance has been compared with classical EAs. Our experience is that the
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Table 1

The simulation results obtained from the classical EA.

Function Success I o min max
Complex 40/100 6118 1761.282 2020 7204
Freudenstein 10/100 6981.3 270.712 6680 7826
Himellblau 66/100 4540 1749.491 2056 7390
Werner-Weber 0/100

algorithm behaves predictably and reliably and the results are quite satisfactory.
All the EAs used have been implemented using the Genetic Algorithms’ library
GEATDbx and all the parameters used have been set to their default values.

In our approach the fitness function for the corresponding EAs used has the follow-
ing form: It selects the points of the search space which satisfy (or nearly satisfy)
the conditions of A in such a way that the point is labeled with the label 7. If an
inequality is satisfied we do not take it into consideration at all. If all the inequali-
ties are satisfied then the fitness function of the respective point becomes zero. For
instance, for the label 2 the fitness function (ff) takes the values:

if fi(xz) > zy then ff =0else ff = |fi(z) — z1],
if fa(z) < zo then ff =0else ff = ff + |fo(z) — 22|

In this case, we obtain the three sets: Sy={points with label 0}, S;={points with
label 1}, So={points with label 2}. If we choose a point from every set then we are
likely to obtain Sperner simplices. When a simplex is found then we search within
the region defined by it. The constraints of this region can very easily be included
in the fitness function as in the case of the function A\. We have implemented this
method using an EA with genes forming a simplex. The aim of this EA is to find a
Sperner simplex. The fitness function is the same as the one described previously
extended by the summation of all the objective values of the EA used to determine
the colors 0, 1 and 2.

Next, we give quantitative results obtained by applying classical EAs and our
method to four test functions [2,8,18] in the region [—1000, 1000] x [—1000, 1000].
All experiments have been conducted 100 times and the corresponding results are
exhibited in Tables 1 and 2. The results are given in terms of the number of
successful runs out of 100 (Success), the average number of function evaluations
(p) required to obtain convergence, the corresponding standard deviation (o) and

Table 2
The simulation results obtained from our hybrid method.

Function Success 7 o min max
Complex 57/100 3757 779.882 2802 5106
Freudenstein 30/100 5831 1360.047 4428 8932
Himellblau 80/100 4852.25 1739.463 2730 7992

Werner-Weber 60/100 6091 2011.99 4124 9516
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the minimum (min) and maximum (max) number of function evaluations.

4 Conclusions

In this work an evolutionary approach is presented, which combines the effective-
ness of the well-known and widely used Evolutionary Algorithms with theoretical
results for the existence of a fixed point obtained by means of the Combinatorial
Topology. Our approach is able to provide solution to very difficult problems that
appear in many scientific and technological areas and real world applications since
it proceeds solely by comparing relative sizes of the function values. The method
can be implemented in parallel, since the EAs are naturally parallel structured,
thus increasing the computational speed.
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