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Two short proofs of a recently proposed intermediate value theorem for simplices are 
given. The obtained proofs are based on Sperner covering principles. Furthermore, 
this intermediate value theorem is applied for the localization and approximation 
of fixed points and zeros of continuous mappings using a simplicial subdivision of 
a simplex. Also, a theorem for the existence of a Sperner simplex (panchromatic 
simplex) in the considered simplicial subdivision is proved. In addition, an error 
estimate is presented.
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1. Introduction

The pioneering Bolzano’s theorem states the following [8,21]:

Theorem 1.1 (Bolzano’s theorem). If f : [a, b] ⊂ R → R is a continuous function and if it holds that 
f(a)f(b) < 0, then there is at least one x ∈ (a, b) such that f(x) = 0.

This theorem is also called intermediate value theorem since it can be easily formulated as follows:
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Theorem 1.2 (Bolzano’s intermediate value theorem). If f : [a, b] ⊂ R → R is a continuous function and if
y0 is a real number such that:

min{f(a), f(b)} < y0 < max{f(a), f(b)},

then there is at least one x0 ∈ (a, b) such that f(x0) = y0.

Obviously, Theorem 1.2 can be deduced from Theorem 1.1 by considering the function g(x) = f(x) − y0.
The first proofs of the above theorem, given independently by Bolzano in 1817 [8] and Cauchy in 1821 [11], 

were crucial in the procedure of arithmetization of analysis, which was a research program in the foundations 
of mathematics during the second half of the 19th century.

A straightforward generalization of Bolzano’s theorem to continuous mappings of an n-cube (parallelo-
tope) into Rn was proposed (without proof) by Poincaré in 1883 and 1884 in his work on the three body 
problem [37,38]. The Poincaré theorem was soon forgotten and it has come to be known as “Miranda’s 
theorem” [33] which partly explains the nomenclature “Poincaré-Miranda theorem” [30] and “Bolzano-
Poincaré-Miranda theorem” [6,51,59].

The Bolzano-Poincaré-Miranda theorem states that [33,49,56]:

Theorem 1.3 (Bolzano-Poincaré-Miranda theorem). Suppose that P =
{
x ∈ Rn | |xi| < L, for 1 � i � n

}
and let the mapping Fn = (f1, f2, . . . , fn): P → Rn be continuous on the closure of P such that Fn(x) �=
θn = (0, 0, . . . , 0) for x on the boundary of P , and

(a) fi(x1, x2, . . . , xi−1, −L, xi+1, . . . , xn) � 0, for 1 � i � n,

(b) fi(x1, x2, . . . , xi−1, +L, xi+1, . . . , xn) � 0, for 1 � i � n.

Then, there is at least one x ∈ P such that Fn(x) = θn.

In 1940 Miranda [33] showed that the above theorem is equivalent to the traditional Brouwer fixed point 
theorem [10]. It is worthy to mention that the Bolzano-Poincaré-Miranda theorem is closely related to 
important theorems in analysis and topology and constitutes an invaluable tool for verified solutions of 
numerical problems by means of interval arithmetic [25,34,36,44]. For a short proof and a generalization of 
the Bolzano-Poincaré-Miranda theorem using topological degree theory we refer the interested reader to [56]. 
In addition, for generalizations with respect to an arbitrary basis of Rn that eliminate the dependence of 
the Bolzano-Poincaré-Miranda theorem on the standard basis of Rn see [15,56]. For generalizations of this 
theorem to infinite-dimensional settings see, e.g., [6,43,44]. Also, for various interesting relations between 
the theorems of Bolzano-Poincaré-Miranda, Borsuk [9], Kantorovich1 [24] and Smale2 [47] with respect to 
the existence of a solution of a system of nonlinear equations, we refer the interested reader to [1].

In [59] a generalization of the Bolzano Theorem 1.1 for simplices (intermediate value theorem for sim-
plices) is proposed (cf. Theorem 2.1 below). For an interesting application of this theorem in economic 
sciences we refer the interested reader to [32]. The obtained proof of this theorem is based on the Knaster-
Kuratowski-Mazurkiewicz lemma (KKM lemma for short, often called the KKM covering theorem or KKM 
covering principle) [26]. For a mathematical formulation of this important lemma the reader is referred to 
Lemma 2.1 below. The KKM lemma constitutes the basis for the proof of many theorems, including the 
famous Brouwer fixed point theorem, among others.

1 Nobel Laureate in Economic Sciences in 1975.
2 Fields Medalist in 1966.
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The KKM lemma has a lot of applications in various fields of pure and applied mathematics. In particular, 
among others, in the field of mathematical economics, the very important and pioneering extension of the 
KKM lemma due to Shapley3 [45], known as Knaster-Kuratowski-Mazurkiewicz-Shapley theorem (KKMS 
theorem for short), constitutes the basis for the proof of many theorems on the existence of solutions in 
game theory and in the general equilibrium theory of economic analysis. A mathematical formulation of 
Shapley’s extension of the KKM lemma can be given as follows [18,20,45,46]:

Theorem 1.4 (Knaster-Kuratowski-Mazurkiewicz-Shapley theorem). Suppose that N is the family of non-
empty subsets of the set N = {1, 2, . . . , n}. Let ej ∈ Rn be the unit vector with components eji = 0
for i ∈ N\{j} and ejj = 1. For each S ∈ N consider: (a) its normalized characteristic vector χS =
(1/card{ S}) 

∑
j∈S ej, where card{ S} denotes the number of elements in the set S, and (b) the convex hull 

co{ej | j ∈ S} denoted by ΔS. Let CS, S ∈ N be a family of closed subsets of ΔN , indexed by the members 
of N , which satisfy the following Shapley’s boundary conditions:

∀ T ∈ N , ΔT ⊂
⋃
S⊂T

CS .

Then, there exists a family B of members of N such that χN ∈ co{χS | S ∈ B} (called balanced family) for 
which 

⋂
S∈B CS �= ∅.

It is worth noting that, when CS = ∅ for all S for which card{ S} � 2, the KKMS theorem reduces to 
the KKM lemma [20]. Due to its importance, this remarkable theorem has been extended and proved under 
different conditions multiple times by several researchers (i.e., see [16,17,19,23,28,29,31,39]).

It is worthy to mention that, the three important and pioneering classical results, namely, the Brouwer 
fixed point theorem [10], the Sperner lemma [48], and the KKM lemma [26] are mutually equivalent in the 
sense that each one can be deduced from another.

Brouwer’s theorem is also very important in economic sciences since it can be used to show the existence of 
equilibria. Nash4 proved his famous theorem [35] using the Brouwer’s fixed point theorem. There are several 
alternative proofs of Nash’s theorem, all using Brouwer’s theorem (with different functions) or Kakutani’s 
fixed-point theorem [22] which is a generalization of Brouwer’s fixed point theorem for fixed points of 
multivalued mappings. Furthermore, these fixed point theorems can be used for proving the existence of 
equilibria due to Arrow5 and Debreu6 [7,14,61].

The paper is organized as follows. In the next session two short proofs of the intermediate value theorem 
for simplices [59] are given. In Section 3 the generalization of the intermediate value theorem for simplices 
is applied for simplicial approximations of zeros of continuous mappings and an error estimate is presented. 
The paper ends in Section 4 with a brief synopsis.

2. Intermediate value theorem for simplices

Notation 2.1. We denote by ϑA the boundary of a set A, by clA its closure, by intA its interior, by card{ A}
its cardinality (i.e., the number of elements in the set A) and by coA its convex hull (i.e., the set of all finite 
convex combinations from A).

3 Nobel Laureate in Economic Sciences in 2012.
4 Nobel Laureate in Economic Sciences in 1994.
5 Nobel Laureate in Economic Sciences in 1972.
6 Nobel Laureate in Economic Sciences in 1983.



4 M.N. Vrahatis / Topology and its Applications 275 (2020) 107036
Notation 2.2. We shall frequently use the index sets Nn = {0, 1, . . . , n}, Nn
¬0 = {1, 2, . . . , n} and Nn

¬i =
{0, 1, . . . , i − 1, i + 1, . . . , n}. Also, for a given set I = {i, j, . . . , �} ⊂ Nn we denote by Nn

¬I or equivalently 
by Nn

¬ij...� the set {k ∈ Nn | k /∈ I}.

Definition 2.1. For any positive integer n, and for any set of points V = {υ0, υ1, . . . , υn} in some linear space 
which are affinely independent (i.e., the vectors {υ1 − υ0, υ2 − υ0, . . . , υn − υ0} are linearly independent) 
the convex hull co{υ0, υ1, . . . , υn} = [υ0, υ1, . . . , υn] is called the n-simplex with vertices υ0, υ1, . . . , υn. 
For each subset of (m + 1) elements {ω0, ω1, . . . , ωm} ⊂ {υ0, υ1, . . . , υn}, the m-simplex [ω0, ω1, . . . , ωm] is 
called an m-face of [υ0, υ1, . . . , υn]. In particular, 0-faces are vertices and 1-faces are edges. The m-faces are 
also called facets of the n-simplex. An m-face of the n-simplex is called the carrier of a point p if p lies on 
this m-face and not on any sub-face of this m-face.

Notation 2.3. We denote the n-simplex with set of vertices V = {υ0, υ1, . . . , υn} by σn = [υ0, υ1, . . . , υn]. 
Also, we denote the (n − 1)-simplex that determines the i-th (n − 1)-face of σn by σn

¬i = [υ0, υ1, . . . , υi−1,

υi+1, . . . , υn]. Furthermore, for a given index set I = {i, j, . . . , �} ⊂ Nn with cardinality card{I} = κ, we 
denote by σn

¬I or equivalently by σn
¬ij...� the (n − κ)-face of σn with vertices υm, m ∈ Nn

¬I .

Lemma 2.1 (Knaster-Kuratowski-Mazurkiewicz (KKM) lemma). Let Ci, i ∈ Nn be a family of (n +1) closed 
subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in Rn satisfying the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and

(b) For each ∅ �= I ⊂ Nn it holds that 
⋂

i∈I σ
n
¬i ⊂

⋃
j∈Nn

¬I
Cj.

Then, it holds that
⋂

i∈Nn Ci �= ∅.

Definition 2.2. A covering satisfying the conditions in the KKM Lemma 2.1 is called a KKM covering.

Observation 2.1. Property (b) of a KKM covering can be stated also as follows:

Each face of any dimension of the simplex σn is covered by the sets that correspond to the vertices 
spanning that face. Thus, the vertex υi is covered by the closed subset Ci, the edge [υi, υj ] is covered by 
Ci ∪Cj while the face [υi, υj , . . . , υ�] is covered by Ci∪Cj ∪ · · · ∪C� for each index set {i, j, . . . , �} ⊂ Nn.

Definition 2.3. ([2, p. 4]). A system (family) of subsets of a set A whose union is A is called a covering
of A. The order of a finite system of sets is the greatest integer k for which the system has k elements with 
nonempty intersection. A system of sets is said to be simple if every two elements of the system are distinct. 
A covering is called an ε-covering if the finite system of sets of this covering are of diameter less than ε > 0.

A similar to KKM covering principle was proposed by Sperner [48] (see also [2, p. 162], [3, p. 378]):

Lemma 2.2 (Sperner covering principle). Let Ci, i ∈ Nn be a family of (n +1) closed subsets of an n-simplex 
σn = [υ0, υ1, . . . , υn] in Rn satisfying the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and

(b) σn
¬i ∩ Ci = ∅, ∀ i ∈ Nn.

Then, it holds that
⋂

i∈Nn Ci �= ∅.
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Remark 2.1. Obviously, Lemma 2.2 is similar to KKM Lemma 2.1 in which the hypothesis (b) is replaced 
by the hypothesis σn

¬i ∩ Ci = ∅, ∀ i ∈ Nn.

A similar result is the following [13,42,50]:

Lemma 2.3 (Sperner covering principle). Let Ci, i ∈ Nn be a family of (n +1) closed subsets of an n-simplex 
σn = [υ0, υ1, . . . , υn] in Rn satisfying the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and

(b) σn
¬i ⊂ Ci, ∀ i ∈ Nn.

Then, it holds that
⋂

i∈Nn Ci �= ∅.

Remark 2.2. Obviously, Lemma 2.3 is similar to KKM Lemma 2.1 in which the hypothesis (b) is replaced 
by the hypothesis σn

¬i ⊂ Ci, ∀ i ∈ Nn. Lemma 2.2 and Lemma 2.3 are equivalent in the sense that each 
one can be deduced from another. A short proof of the equivalence of Lemma 2.1 and Lemma 2.3 was given 
in [13].

Definition 2.4. Let ψ be a real number, and let us set

sgnψ =

⎧⎪⎨
⎪⎩

−1, if ψ < 0,
0, if ψ = 0,
1, if ψ > 0.

Then, for any a = (a1, a2, . . . , an) ∈ Rn the sign of a, denoted sgn a, is defined as follows:

sgn a = (sgn a1, sgn a2, . . . , sgn an) .

Next, we give short proofs of the generalization of the intermediate value theorem for simplices [59]. The 
obtained proofs are based on Lemma 2.2 and Lemma 2.3 correspondingly.

Theorem 2.1 (Intermediate value theorem for simplices [59]). Assume that σn = [υ0, υ1, . . . , υn] is an 
n-simplex in Rn. Let Fn = (f1, f2, . . . , fn): σn → Rn be a continuous function such that fj(υi) �= 0, ∀ j ∈
Nn

¬0 = {1, 2, . . . , n}, i ∈ Nn = {0, 1, . . . , n} and θn = (0, 0, . . . , 0) /∈ Fn(ϑσn) (i.e., Fn does not vanish 
on the boundary ϑσn of σn). Assume that the vertices υi, i ∈ Nn are reordered such that the following 
hypotheses are fulfilled:

sgnfj(υj) sgnfj(x) = −1, ∀x ∈ σn
¬j , j ∈ Nn

¬0, (1)

sgnFn(υ0) �= sgnFn(x), ∀x ∈ σn
¬0, (2)

where sgnFn(x) =
(
sgnf1(x), sgnf2(x), . . . , sgnfn(x)

)
and σn

¬i denotes the face opposite to vertex υi. Then, 
there is at least one point x ∈ intσn such that Fn(x) = θn.

Proof based on Lemma 2.2. Due to hypotheses (1) and (2) it is evident that the following holds:

sgnFn(υi) �= sgnFn(x), ∀x ∈ σn
¬i, i ∈ Nn. (3)

By virtue of conditions (1) it is obvious that for the vertex υ0 the following relations are also fulfilled:
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sgnfj(υ0) sgnfj(υj) = −1, ∀ j ∈ Nn
¬0 , (4)

as well as it is evident that for the vertices υi, i ∈ Nn it holds that:

sgnFn(υi) �= sgnFn(υ�), ∀ i, � ∈ Nn, i �= �. (5)

Furthermore, it is obvious that for all j ∈ Nn
¬0 the j-th component sgnfj(υi) of sgnFn(υi) = (sgnf1(υi),

sgnf2(υi), . . . , sgnfn(υi)) is not the same for all the vertices υi, i ∈ Nn. Therefore, for the following sets 
Sfj we have that:

Sfj =
{
x ∈ intσn

∣∣ fj(x) = 0
}
�= ∅, ∀ j ∈ Nn

¬0. (6)

For each one of the vertices υj, j ∈ Nn
¬0 we correspondingly consider the following closed sets:

Cj = cl
{
x ∈ σn

∣∣ sgnfj(x) = sgnfj(υj)
}
, j ∈ Nn

¬0, (7)

while for the vertex υ0 we consider the following closed set:

C0 = cl
{
x ∈ σn

∣∣ sgnFn(x) = sgnFn(υ0)
}
. (8)

Since by hypothesis we have fj(υi) �= 0, ∀ j ∈ Nn
¬0, i ∈ Nn, it is obvious that the following holds:

intCi �= ∅, ∀ i ∈ Nn. (9)

Furthermore, it is evident that the following relation is valid:

intC0
⋂ ⎧⎨

⎩
⋃

j∈Nn
¬0

intCj

⎫⎬
⎭ = ∅. (10)

Due to hypotheses (1) and (2) and relations (7), and (8) it is obvious that the faces σn
¬i, i ∈ Nn have no 

points in common with the corresponding closed sets Ci. That is

σn
¬i ∩ Ci = ∅, ∀ i ∈ Nn . (11)

Let us denote by x∗ any x ∈ σn such that fj(x∗) �= 0, ∀ j ∈ Nn
¬0. It is obvious that for these points x∗

the number of values that the function sgnFn(x∗) = (sgnf1(x∗), sgnf2(x∗), . . . , sgnfn(x∗)) can obtain is 2n. 
Let us consider that the function values of sgnFn(x∗) form a set with cardinality card{sgnFn(x∗)}. Due to 
relation (8) for any x∗ ∈ intC0 we obtain that card{sgnFn(x∗)} = 1. On the other hand, due to relation (7), 
for any x∗ ∈ intCj , j ∈ Nn

¬0, we have card{sgnFn(x∗)} = 2n−1. Therefore, for any x∗ ∈
⋃

j∈Nn
¬0

intCj we 
obtain card{sgnFn(x∗)} =

∑n
�=1 2n−� or, equivalently, card{sgnFn(x∗)} = 2n−1. Thus, due to relations (9)

and (10) we have that for any x∗ ∈
⋃

i∈Nn intCi, it holds that card{sgnFn(x∗)} = 2n. Therefore, we conclude 
that the following is valid:

σn =
⋃

i∈Nn

Ci . (12)

Using relations (11) and (12) it is evident that the sets Ci, i ∈ Nn are well defined according to the 
hypotheses of Lemma 2.2. Thus, by virtue of Lemma 2.2 we obtain 

⋂
i∈Nn Ci �= ∅ and consequently ⋂

i∈Nn ϑCi �= ∅. Therefore, due to the continuity of Fn, for the following solution set SFn
it holds that 

SFn
=

{
x ∈ intσn

∣∣ fi(x) = 0, ∀ i ∈ Nn
¬0
}
�= ∅. Thus, the theorem is proved. �
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Proof based on Lemma 2.3. In order to avoid repetitions, let us assume that the relations (3) to (6) of the 
previous proof are fulfilled.

For each one of the vertices υj , j ∈ Nn
¬0 we correspondingly consider the following closed sets:

C ′
j = cl

{
x ∈ σn

∣∣ sgnfj(x) = sgnfj(υj)
}
, j ∈ Nn

¬0, (13)

and

Cj = cl
{
x ∈ σn

∣∣ x /∈ C ′
j

}
, j ∈ Nn

¬0, (14)

while for the vertex υ0 we consider the following closed sets:

C ′
0 = cl

{
x ∈ σn

∣∣ sgnFn(x) = sgnFn(υ0)
}
, (15)

and

C0 = cl
{
x ∈ σn

∣∣ x /∈ C ′
0
}
. (16)

Since by hypothesis we have fj(υi) �= 0, ∀ j ∈ Nn
¬0, i ∈ Nn, it is obvious that the following holds:

intC ′
i �= ∅, ∀ i ∈ Nn, (17)

while by virtue of hypotheses (1) and (2) it is obvious that:

intCi �= ∅, ∀ i ∈ Nn. (18)

Due to hypotheses (1) and (2) and relations (14) and (16) it is obvious that the faces σn
¬i, i ∈ Nn are 

covered by the corresponding closed sets Ci. Thus,

σn
¬i ⊂ Ci, ∀ i ∈ Nn. (19)

By virtue of relations (14) and (15) and due to relations (4) it is evident that C ′
0 =

⋂
i∈Nn

¬0
Ci. Thus, since 

σn = C ′
0 ∪ C0 it is obvious that:

σn =
⋃

i∈Nn

Ci. (20)

Using relations (19) and (20) it is evident that the sets Ci, i ∈ Nn are well defined according to the 
hypotheses of Lemma 2.3. Thus, by virtue of Lemma 2.3 we obtain 

⋂
i∈Nn Ci �= ∅ and consequently ⋂

i∈Nn ϑCi �= ∅. Therefore, due to the continuity of Fn, for the following solution set SFn
it holds that 

SFn
=

{
x ∈ intσn

∣∣ fi(x) = 0, ∀ i ∈ Nn
¬0
}
�= ∅. Thus, the theorem is proved. �

Remark 2.3. For n = 1, Theorem 2.1 clearly reduces to the Bolzano intermediate value theorem. For this 
reason, Theorem 2.1 was named “intermediate value theorem for simplices”.

Remark 2.4. The only computable information required by hypotheses (1) and (2) of Theorem 2.1 is the 
algebraic sign of the function values on the boundary of the n-simplex σn. Thus, Theorem 2.1 is applicable 
whenever the signs of the function values are computed correctly. The algebraic sign is the smallest amount 
of information (one bit of information) necessary for the purpose needed. Thus, the methods that require 
only algebraic signs are of major importance for tackling problems with imprecise (not exactly known) 
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information. This kind of problems occurs in various scientific fields including mathematics, economics, 
engineering, computer science, biomedical informatics, medicine and bioengineering, among others. This is 
so, because, in a large variety of applications, precise function values are either impossible or time consuming 
and computationally expensive to obtain. One such application is provided in [57]. This application concerns 
the computation of all the periodic orbits (stable and unstable) of any period and accuracy which occur, 
among others, in the study of beam dynamics in circular particle accelerators like the Large Hadron Collider 
(LHC) machine at the European Organization for Nuclear Research (CERN). In this application, the method 
which is presented in [53] and is implemented in [54] is used.

3. Simplicial approximations of zeros of continuous mappings

Theorem 2.1 can be used for approximating fixed points and solutions to systems of nonlinear equations 
within a given simplex. To this end, we describe a well known and widely used approach that is based on 
the theory of simplicial approximation of continuous mappings. In general, simplicial methods are named 
the procedures which provide approximations to solutions by means of simplices [5]. In 1912 Brouwer [10]
for the proof of his fixed point theorem developed the theory of simplicial approximation of continuous 
mappings and applied it in order to compute the well-known Brouwer’s degree. The Brouwer’s fixed point 
theorem and its generalizations were very useful in providing the existence of solutions to a lot of problems 
in mathematics. On the other hand, from the computational point of view, their usefulness was restricted. 
This is so, because all computational methods that used for the computation of an approximate fixed point 
of a given function were based on iterative procedures that required additional restrictions on the function 
in order to guarantee convergence.

In 1967 Scarf [41] developed a method for approximating a fixed point of a continuous function from 
a unit simplex into itself (cf. Remark 3.1 below). Scarf’s method provided the first constructive proof to 
Brouwer’s fixed point theorem. This approach is considered very important and various extensions of this 
have been proposed. Scarf’s simplicial method is based on a simplicial subdivision (triangulation) of the 
given simplex and it uses a labeling of the vertices of the simplicial subdivision.

Definition 3.1. ([4, p. 153]). A simplicial subdivision or triangulation of an n-simplex σn is a partition of 
σn into n-simplices σn

i such that the intersection of two n-simplices σn
i and σn

j is a face (of any dimension) 
of each of them, or the empty set. The vertices (0-faces) of the n-simplices σn

i are called vertices of the 
simplicial subdivision.

Proposition 3.1. ([3, p. 607], [60, p. 812]). The diameter of an m-simplex σm in Rn, m � n, denoted by 
diam(σm), is the length of the longest edge (1-face) of σm.

Definition 3.2. The mesh of a simplicial subdivision T of an n-simplex σn in Rn denoted by mesh(σn), is 
given by the supτn∈T diam(τn).

Definition 3.3. Let T be a simplicial subdivision of an n-simplex σn in Rn and let T 0 be the set of the 
vertices of T . A labeling function of T is a function λ : T 0 → N0.

Definition 3.4. A labeling function λ(υ) which is defined on an n-simplex σn = [υ0, υ1, . . . , υn] is called a 
proper labeling function if it satisfies the following conditions:

(a) λ (υ) ∈ Nn = {0, 1, . . . , n},

(b) {λ(υ0), λ(υ1), . . . , λ(υn)} = Nn = {0, 1, . . . , n},
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(c) If the i-face determined by the set of vertices 
{
υk0 , υk1 , . . . , υki

}
is the carrier of a point υ then λ(υ) ∈{

λ(υk0), λ(υk1), . . . , λ(υki)
}
.

Similarly, we give the following definition.

Definition 3.5. A labeling is called admissible if for a simplicial subdivision T of an n-simplex σn in Rn each 
vertex of T is labeled with an integer in N0 such that no vertex in the i-face σn

¬i is labeled with i.

Definition 3.6. Assume that σk = [ω0, ω1, . . . , ωk] is a k-simplex, k � n, of a simplicial subdivision of σn, 
then σk is said to have a complete set of labels if it holds that {λ(ω0), λ(ω1), . . . , λ(ωk)} = {0, 1, . . . , k}. 
This simplex is also called completely-labeled simplex.

Definition 3.7. A completely-labeled n-simplex (with a complete set of labels) is also called Sperner or 
panchromatic n-simplex.

The very important and pioneering Sperner’s lemma [12,58] states that: “For any simplicial subdivision 
and proper labeling function of an n-simplex σn in Rn there is at least one n-simplex of the subdivision with 
a complete set of labels”. This lemma can also be formulated as follows:

Lemma 3.1 (Sperner [48]). Let T be a simplicial subdivision of an n-simplex σn in Rn. Assume that the 
vertices of T are labeled using an admissible labeling. Then there is at least one completely-labeled n-simplex 
τn in T .

Remark 3.1. It is well-known that for continuous mappings and a fine enough simplicial subdivision the 
vertices of a completely-labeled n-simplex τn of the simplicial subdivision approximate a fixed point of the 
mapping. To this end, there are various methods including the fundamental Scarf’s method [41,61]. Scarf’s 
method approximates a fixed point of a continuous mapping Fn = (f1, f2, . . . , fn) : un → un, where un is the 
unit simplex un = {x � 0 | 

∑
i xi = 1}. The method considers a simplicial subdivision T of un into simplices 

of sufficiently small mesh mesh(un), so that ‖x − y‖ � mesh(un) implies ‖Fn(x) − Fn(y)‖ � ε/n, for ε > 0. 
Then, it labels each vertex w of the subdivision using an index i = 1, 2, . . . , n such that wi > fi(w). In the 
case where w is not a fixed point there is at least one such index, while, if w is a fixed point then it labels w
with, i.e., argi max(wi). The unit vectors ei at the n corners of the simplex un are labeled with i, and all 
the vertices on the face xj = 0 are labeled with an index different to j. Then, Sperner’s lemma implies that 
the subdivision has at least one completely-labeled simplex (panchromatic simplex) τn (a small simplex τn

whose vertices have distinct labels). From the choices of the labels and the value of mesh(un) it follows that 
any point x ∈ τn satisfies ‖F (x) − x‖ � ε.

Remark 3.2. It is worth mentioning that, since the condition that no vertex in the i-face τn¬i is labeled with i

may not be fulfilled, then τn may not enclose a fixed point. Thus, in general, the term “approximate fixed 
point” is used in the sense that the point is close to its image while it is not necessary close to a fixed point. 
On the other hand, by considering finer subdivisions such as the mesh of the subdivision to tend to zero 
then the resulting sequence of approximate fixed points must contain (by compactness) a subsequence that 
converges to a point, which must be a fixed point [61].

Next we present a theorem for simplicial approximations of zeros of continuous mappings which is based 
on Theorem 2.1 and Sperner’s Lemma 3.1.

Theorem 3.1 (Simplicial approximation of zeros). Let σn = [υ0, υ1, . . . , υn] be an n-simplex in Rn and 
let Fn = (f1, f2, . . . , fn): σn → Rn be a continuous function such that the hypotheses of Theorem 2.1 are 
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fulfilled. Assume that T is a simplicial subdivision of σn and let T 0 be the set of the vertices of T . Consider 
the following labeling function λ : T 0 → N0 of T :

λ(x) =

⎧⎪⎪⎨
⎪⎪⎩

i, if sgnFn(x) = sgnFn(υi), for i ∈ Nn,

min{j | j ∈ Nn
¬0�}, if for � ∈ Nn

¬0, ∃ y ∈ σn
¬� s.t. ∀ i ∈ Nn, sgnFn(x) = sgnFn(y) �= sgnFn(υi),

1, otherwise.

Then there is at least one completely-labeled n-simplex τn in T .

Proof. Obviously each vertex of the simplicial subdivision T is labeled with an integer in Nn = {0, 1, . . . , n}. 
Due to hypotheses (1) and (2) of Theorem 2.1 it is evident that no vertex in the i-face σn

¬i is labeled with i. 
Thus, the vertices of T are labeled using an admissible labeling. By virtue of Sperner Lemma 3.1 there is 
at least one completely-labeled n-simplex τn in T . Thus, the theorem is proved. �
Remark 3.3. Similarly to the discussion of Remark 3.1 by considering finer subdivisions such as the mesh 
of the subdivision to tend to zero then the resulting sequence of approximate zeros must contain (by 
compactness) a subsequence that converges to a point, which must be a zero point. The approximate zero 
point can be obtained by an interior point in τn such as the barycenter of τn that can be computed by its 
vertices.

Definition 3.8. Let σm = [υ0, υ1, . . . , υm] be an m-simplex in Rn, m � n. Then the barycenter of σm denoted 
by K is a point in Rn such that:

K = 1
m + 1

m∑
i=0

υi.

Remark 3.4. By convexity it is obvious that the barycenter of any m-simplex σm in Rn is a point in the 
relative interior of σm.

Next we give estimates of the above approximation where the Euclidean norm is used to measure dis-
tances.

Theorem 3.2. ([52]). Suppose that σm = [υ0, υ1, . . . , υm] is an m-simplex in Rn, m � n. Let K be the 
barycenter of σm and let Ki be the barycenter of the i-th face σm

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υm] of σm

then the following relationships hold for all 0 � i � m,

(a) The points υi, K and Ki are collinear points,

(b) ‖K − υi‖ = m

m + 1

⎛
⎜⎜⎝ 1
m

m∑
j=0
j �=i

‖υi − υj‖2 − 1
m2

m−1∑
p=0
p�=i

m∑
q=p+1
q �=i

‖υp − υq‖2

⎞
⎟⎟⎠

1/2

,

(c) ‖K −Ki‖ = m−1‖K − υi‖.

Proof. See [52]. �
Definition 3.9. ([55]). The barycentric radius β(σm) of an m-simplex σm in Rn is the radius of the smallest 
ball centered at the barycenter of σm and containing the simplex. The barycentric radius β(A) of a subset 
A of Rn is the supremum of the barycentric radii of simplices with vertices in A.
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Remark 3.5. The length of the barycentric radius β(σm) of an m-simplex σm in Rn, m � n, is given by 
max

0�i�m
‖K − υi‖.

Theorem 3.3. ([55]). Any m-simplex σm = [υ0, υ1, . . . , υm] in Rn, m � n is enclosable by the spherical 
surface Sm−1

β centered at the barycenter of σm and with radius the barycentric radius β(σm) given by:

β(σm) = 1
m + 1 max

0�i�m

⎧⎪⎪⎨
⎪⎪⎩
m

m∑
j=0
j �=i

‖υi − υj‖2 −
m−1∑
p=0
p�=i

m∑
q=p+1
q �=i

‖υp − υq‖2

⎫⎪⎪⎬
⎪⎪⎭

1/2

.

Proof. See [55]. �
Remark 3.6. The barycentric radius β(σn) of an n-simplex σn in Rn can be used to estimate error bounds 
for approximate fixed points or approximate roots of mappings in Rn, by approximating a fixed point or 
a root by the barycenter of σn. Note that the computation of β(σn) requires only the lengths of the edges 
of σn, which are also required in order to compute the diameter diam(σn) of σn. Furthermore, since the 
distance of the barycenter K of an n-simplex σn = [υ0, υ1, . . . , υn] in Rn from the barycenter Ki of the i-th 
face σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn] of σn is equal to ‖K − υi‖/n [52,55], then using Theorem 3.3 we 
can easily compute the value of

γ(σn) = min
0�i�n

‖K −Ki‖/diam(σn).

The value γ(σn) can be used to estimate the thickness θ(σn) of σn, that is given by [5,27,40,60]:

θ(σn) = min
0�i�n

{
min
x∈σn

¬i

∥∥K − x
∥∥} /diam(σn).

The thickness θ(σn) is important to piecewise linear approximations of smooth mappings and, in general, 
to simplicial and continuation methods for approximating fixed points or solutions of systems of nonlinear 
equations.

4. Synopsis

Two short proofs of a intermediate value theorem for simplices [59] are given. The proofs are stemmed from 
Sperner covering principles of a simplex. Also, this intermediate value theorem is applied for the localization 
and approximation of fixed points and zeros of continuous mappings using a simplicial subdivision of a 
simplex. Furthermore, a theorem for the existence of a Sperner simplex (panchromatic simplex) in the 
considered simplicial subdivision is proved. In addition, an error estimate is presented.
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