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Abstract
Interactions among stakeholders in deregulated markets lead to complex interdependent
optimization problems. The present study is motivated by load control programs in
energy markets and more precisely by using the power supply interruption as a tool for
reducing consumers’ demand voluntarily, also known as voluntary load curtailment
programs. The problem is formulated as a Stackelberg game, specifically, as a bilevel
optimization problem that belongs to the mathematical programs with equilibrium
constraints. In this game, a player that acts as leader determines the actions of the
players that act as followers and play a Nash game among them through a subsidy
program. The corresponding equilibria need to be found and the presence of nonconvex
functions makes the use of metaheuristic algorithms attractive. An extension of particle
swarm optimization is proposed for solving such problems based on the unified particle
swarm optimization that is a variation of the plain particle swarm optimization algo-
rithm. The proposed algorithm is tested by solving some examples of the formulated
games in order to study its efficiency and the interactions between the stakeholders of
the market.

Keywords Particle swarm optimization . Stackelberg . Nash . Energymarket . Bilevel
programming . Demand response . Energymanagement system . Operations research .

Management science

Abbreviations
ISO Independent system operator
KKT Karush-Kuhn-Tucker
LICQ Linear independence constraint qualification

https://doi.org/10.1007/s43069-020-00021-4

* Michael N. Vrahatis
vrahatis@math.upatras.gr

Panagiotis Kontogiorgos
panko09@hotmail.com

George P. Papavassilopoulos
yorgos@netmode.ntua.gr

Extended author information available on the last page of the article

SN Operations Research Forum (2020) 1: 20

/Published online: 19 August 2020

http://orcid.org/0000-0001-8357-7435
http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-020-00021-4&domain=pdf
mailto:vrahatis@math.upatras.gr


MPEC Mathematical program with equilibrium constraints
PSO Particle swarm optimization
UPSO Unified particle swarm optimization
VLC Voluntary load curtailment

1 Introduction

Deregulation is currently considered to make markets more efficient. That is why it has
been implemented in many fields resulting in complex interactions among stakeholders
at all levels of a market. The interactions are usually modeled using game theory
notions and these models are then solved by applying various optimization methods
[1].

In simple problems, deterministic optimization methods can be used in order to find
the optimal solution. However, in complex large-scale systems, the convergence to the
required solution representing an optimal or some game equilibrium is not guaranteed
since nonlinear and nonconvex functions are used; therefore, meta-heuristic algorithms
become attractive. Several meta-heuristic evolutionary algorithms have been recently
tested for solving complex energy management problems, including among others,
artificial bee colony optimization [2], imperialist competition algorithm [3], and ant
colony optimization [4], giving promising results. Some of these algorithms are based
on collective intelligent behaviors in nature. In the present study, a variation of the
standard particle swarm optimization (PSO) algorithm, which studies the collective
behavior of simple interacting agents in small groups, is used. The proposed particle
swarm optimizer is based on the unified particle swarm optimization (UPSO) that also
belongs to the category of swarm intelligence algorithms. It is a stochastic algorithm
and various tests have shown that it is a very promising algorithm for solving complex
optimization problems [5].

The present study is motivated by energy markets where demand response is used in
order to motivate consumers to modify their consumption patterns through price signals
or other incentives [6, 7]. The game examined concerns the implementation of a
subsidy program where a player of the market, who acts as leader, offers subsidies as
an incentive to the consumers, which are the followers, in order to influence their
actions. A category of such programs is the voluntary load curtailment (VLC) programs
that have been implemented with success in electricity markets during the last years,
especially in USA [8]. It has been shown empirically that these load control programs
can reduce demand in high price periods or in various system security emergencies [9].
Moreover, many recent studies incorporate demand response programs in complex
optimization problems regarding energy market dynamics in order to evaluate their
influence on the price formation [10–12]. These experimental validations suggest that
demand response can be used in complex real-time energy management systems. There
are various energy market entities that are related to final consumers and could act as
leader in a demand response program. For example, it could be a power producer that
believes his bilateral power supply agreements with large consumers will not be met
due to a failure, or a utility company that realizes its demand forecast error will result in
high market penalties, but in most cases, it is a system operator that foresees a supply-
demand imbalance and needs to take action to prevent a network’s black-out. In

SN Operations Research Forum (2020) 1: 20Page 2 of 2320



modern liberalized markets, this entity informs about their request an aggregator. An
aggregator has active contracts with consumers enabling him to manage their loads
according to mutually agreed terms regarding the maximum load curtailment, the
notice prior to curtailment and its duration, compensation terms etc. An aggregator
represents a large number of final consumers, so if a system operator or another
stakeholder requests a massive load curtailment and this request is financially profitable
for final consumers, the aggregators implements the curtailment. Any energy market
stakeholder that wishes to manage aggregated consumer loads can become an
aggregator, regardless of whether they are related to power production, energy supply,
or other energy services, meaning the leader requesting the load curtailment and the
aggregator implementing it may be the same entity.

For a VLC program to be successfully implemented, the leader needs to design it in
advance. This is the reason why the proposed methodology can be used as a decision
support tool in order to analyze the consumers’ response and design a suitable demand
response program that will become effective if needed, specifically, in the case of real-
time operation of a grid [13], system emergency or even long-term planning of
investments and security of supply in energy markets [14]. In any case, the market
deregulation and the appearance of demand-response programs makes the study of the
stakeholders’ interactions an interesting and promising area for developing efficient and
effective algorithms for complex systems [15, 16].

The type of games used to model the above issue is the so-called Stackelberg games
or leader-follower games and are modeled as bilevel programming problems with
leaders being the upper level and followers being the lower level. A leader provides
the followers with some pieces of information and wants to optimize his objective
function by incorporating into his optimization problem the followers’ reactions, who
believe that the leader’s decisions are exogenous and fixed. Stackelberg games are
generally difficult to be solved due to nonconvexities that occur in both levels and
especially the lower-level problems that are incorporated into the upper level. Many
methodologies for solving them have been presented since the first algorithmic
attempts [17–19] in order to exploit the specific structure of certain problems. The
case with one leader and many followers belongs to the category of mathematical
programs with equilibrium constraints (MPEC) [20] where the equilibrium constraints
correspond to the Nash game played by the followers that try to optimize their costs
based on the feedback from the leader. The results of such a problem may vary
depending on whether energy market participants cooperate though coalition forma-
tions in supply or demand [21, 22] or not [23]. In the present study, noncooperative
game theory is promoted as followers do not cooperate among themselves or with the
leader, since in large scale demand response programs individual consumers usually
cannot influence market operation except if very large coalitions are formed. There are
algorithms for solving this kind of bilevel problems under specific assumptions [1, 24,
25] but even if these do not hold, we still seek the Nash equilibrium among the
followers. In this way, it is possible to study their interactions, foresee the reactions
resulting from a leader’s decision and estimate a suboptimal solution for the
Stackelberg leader-follower problem.

In the paper at hand, a PSO algorithm is proposed for solving the formulated bilevel
programming problem and finding the corresponding Nash and Stackelberg equilibria
in order to overcome limitations of the traditional mathematical programming
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framework. For this reason, the algorithm needs to converge to the optimal solution of
each player by considering the other players’ actions. In general, deterministic algo-
rithms are not very efficient and effective when they are applied to large-scale complex
problems that model the behavior of many market participants. Therefore, a
metaheuristic PSO algorithm is used in order to solve the formulated Stackelberg
problem of the VLC program implementation. Specifically, the UPSO algorithm is
used and it was extended using a multiple-swarm approach in order to address
equilibria problems, i.e., multiple swarms tackle different optimization problems si-
multaneously and every algorithmic iteration provides the sum of all the swarms’
solutions as input to the next one. The proposed algorithm was also combined with
Lagrange multiplier methods resulting in increased efficiency and effectiveness under
certain assumptions. These algorithms were tested in various examples of VLC pro-
grams by comparing the optimization results with those obtained from a suitable solver
of GAMS, that is, specialized software developed for modeling and solving complex
optimization problems [26]. Each player in an energy market has his own characteris-
tics that need to be taken into consideration. For this reason, we seek to find his profit
and study if and how all the players can be benefited from the implementation of a VLC
program. So far, due to lack of smart energy meters in low voltage consumers, such
programs target mostly large industrial and commercial consumers with high and more
easily controllable loads but the proposed methodology is scalable, thus, it is also
applicable to large-scale problems involving residential consumers. The numerical
results suggest that the proposed algorithm is efficient and effective especially as far
as Nash equilibria are concerned but also that, through the implementation of a suitable
VLC program the goal of reducing the total energy demand is achieved while there is a
profit both for the leader and the followers. Therefore, this type of demand response
programs could be widely used in order to increase system reliability and mitigate
possible system risks.

The main contributions of the present paper are the following:

1. Development of a decision-support tool for energy market stakeholders that are
interested in designing demand-response VLC programs.

2. The experimental implementation of an extended PSO algorithm towards
supporting the decision-making process, with the following characteristics:
(a) Capability of solving simultaneously large-scale interdependent optimization

problems in order to seek game equilibria
(b) Increased rate of convergence.

3. Conduct of numerical case studies in order to evaluate and validate the proposed
framework and the effectiveness of VLC programs.

The rest of the paper is structured as follows: In Sect. 2, the mathematical formulation
of the game is presented and the difficulties in solving it are described. In Sect. 3, the
mathematical programming framework for solving bilevel programming programs is
given. In Sect. 4, the standard UPSO algorithm is described along with the extensions
made. In Sect. 5, the proposed algorithm is tested, and various VLC program schemes
are examined by providing numerical results. Finally, in Sect. 6, a synopsis, concluding
remarks and future extensions of this research are presented.
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2 Formulation of the Game

For convenience of the reader, we provide the following synoptic lists which summa-
rize the problem’s functions, variables, and parameters:

Problem’s functions:

Cpr Leader’s production cost function (€)

Cex Leader’s extra cost function (€)

F Total offered fee function (€)

Ci Comfort cost function of follower i (€)

Fi Subsidy function of follower i (€)

Problem’s variables:

qpr Quantity produced (kWh)

qex Quantity supplied at extra cost (kWh)

qs Total supply quantity (kWh)

qd Total demand quantity (kWh)

qc Total curtailed quantity (kWh)

r1 Offered fee parameter (€/kWh)

qd, i Demand of follower i (kWh)

qc, i Quantity curtailed to follower i (kWh)

p Market price (€/kWh)

Problem’s parameters:

qmax Maximum leader’s production (kWh)

cpr Slope of leader’s production function(€/kWh)

cex Slope of leader’s extra cost function(€/kWh)

q∗ Expected total demand at expected equilibrium (kWh)

q*i Expected demand of follower i at expected equilibrium (kWh)

c1, i Comfort cost parameter of follower i (€/kWh)

ni Exponent related to follower’s i comfort cost

qmin, i Minimum load needs of follower i (kWh)

M Sufficiently large positive number

b1 Supply function slope (€/kWh)

The equilibrium price and quantity in an energy market can be estimated before the
clearing of the market using the expected supply and demand functions. Without a
subsidy program and assuming linear market functions, if q represents the quantity of
the energy, then the supply function is fs = b1q, b1 ≥ 0 and the aggregated demand
function of the consumers is expected to be fd = a2 − b2q, with a2, b2 ≥ 0. In order the
supply to meet demand, it must be hold that fs = fd; therefore, the expected equilibrium
values of energy price and quantity are p* ¼ b1 a2

b1þb2
and q* ¼ a2

b1þb2
, respectively.

If the price is expected to rise above a threshold, there is need to interfere and move
the equilibrium at a lower price for financial and stability reasons. For this purpose, a
subsidy program can be used, such as a VLC program, meaning that the leader of the
market can offer a fee to the consumers (followers) in order to incentivize them to
reduce their energy demand voluntarily. In this way, the demand curve can be flattened,
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and peak prices are avoided. Attention must be given to the fact that the followers must
be compensated based on historical data of their consumption to discourage them to act
strategically. Moreover, such programs should be subject to regulation since they may
postpone new investments in the energy sector.

In order to model a subsidy program, we need to take into consideration the costs
and gains introduced to the players. The player that offers the subsidy, e.g., a power
producer or the independent system operator (ISO) of the market, endows the con-
sumers with an amount of money to prevent high prices in energy supply or/and
production. As far as the consumers are concerned, there is a gain from the subsidy,
on the other hand, a cost is also introduced. In the case of industrial and commercial
consumers this cost represents the financial losses caused by the curtailment so it can be
easily quantified, but in the case of residential consumers there is a comfort cost that is
not just financial. Comfort cost is a term introduced in this study to describe the fact that
a consumer hesitates to reduce his energy demand because then he will not be able to
perform all the activities that he has planned and thus feeling uncomfortable. It is a
qualitative criterion that needs to be quantified in order to be incorporated into
mathematical models and optimization algorithms. For example, the comfort cost
function can be calculated based on some measurable key indicators that are related
to energy consumption such as indoor temperature, tasks that need to be shifted, etc.
Comfort cost depends on the consumer, thus differentiating the consumers and their
response to a subsidy program. For the subsidy program to be meaningful, the fee paid
to the consumers must outweigh any cost induced.

If a subsidy program is offered through a total fee F that depends on a fee parameter
r1, then the Stackelberg game is formulated as a bilevel programming problem which is
expressed mathematically as follows:

min
qpr;qs;r1

Cpr þM qmax−qpr
� �

þ Cex−pqs þ F
n o

; ð1Þ

subject to

qpr≤qmax; ð1aÞ

qs ¼ qpr þ qex; ð1bÞ

qs þ qc ¼ q*; ð1cÞ

qd ¼ ∑iqd;i; ð1dÞ
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qc ¼ ∑iqc;i; ð1eÞ

qpr; qs; qex≥0; ð1fÞ

mini
qd;i

pqd;i þ Ci−Fi
� �

subject to Ci < Fi; qc;i ¼ q*i −qd;i; qd;i≥qmin;i;∀i ð1gÞ

qs ¼ qd ; ð1hÞ

p ¼ b1qs: ð1iÞ

The inner objective functions correspond to the consumers. The variable qd, i denotes
the quantity of energy demanded by the consumer i, i = 1, 2,…, n which is obtained at
price p, Ci is his cost, Fi is the subsidy he receives, qc, i is the energy curtailed to the
consumer i and q*i is his expected demand without subsidy. Each consumer has his own
basic needs and preferences, so there is a certain amount of energy qmin, i he will not
accept to cede. We assume that the cost is a polynomial function of qc, i and the subsidy
is a linear function respectively with common fee parameter for all consumers, e.g.,
Ci ¼ c1;iq

ni
c;i and Fi = r1qc, i with c1, i, r1 ≥ 0 and ni integers.

The outer objective function corresponds to the leader. The production cost Cpr is
assumed to be a linear function of the quantity produced qpr and the extra cost Cex a
quadratic function of the quantity otherwise acquired expensively, qex, in case of
emergency or failure, e.g., Cpr = cprqpr and Cex ¼ cexq2ex with cpr, cex ≥ 0. The leader
has a capacity limit qmax beyond which the supply cost increases faster and M is a
sufficiently large positive number to prevent him from supplying energy expensively
when it is not necessary. The total demanded and supplied energy is qd and qs
respectively and its price is p. The total curtailed energy quantity is qc and F is the
total fee paid to the consumers as subsidy. The leader can also calculate the total
expected demand q∗ based on historical data. The constraints (1h) and (1i) are joint for
both inner and outer problems, and they are derived from the market clearing
conditions.

In order to simplify the mathematical formulation, the equation constraints are used
to substitute many variables directly into the objective functions. In this way the
variables qs, qex, qc, i, p can be eliminated from the problem, nevertheless they are
useful in the decision support process.

The problem is a Stackelberg game between the leader and the consumers, who
decide about the curtailed quantities by playing a Nash game among them that depends
on the fee parameter announced by the leader and their cost functions. The interaction
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among the consumers’ variables observed through joint constraints (1h) and (1i) leads
to a generalized Nash equilibrium [27, 28]. Based on this formulation, the followers’
game is assumed to converge in a unique equilibrium. In the case where all the above
mentioned functions are convex, traditional mathematical programming techniques can
be used in order to find the equilibria. On the other hand, this problem is generally
difficult to be solved since the production cost, the consumers’ costs and the subsidy
may be nonconvex or/and nondifferentiable functions. The examples presented in Sect.
5 cover both cases to assess the proposed algorithms and study the players’ interactions.

3 Mathematical Programming Framework

A mathematical program with equilibrium constraints (MPEC) is an optimization
problem having as constraints other optimization problems that represent equilibrium
conditions. The general form of an MPEC is as follows:

min f x; yð Þ; ð2Þ

subject to

x∈Ω; ð2aÞ

y∈S xð Þ; ð2bÞ

where Ω ⊂Rn and S(x) is the solution set of the reactions of the other decision makers,
which represents an equilibrium constraint. A bilevel programming problem is a special
case of an MPEC where the constraint region of the upper level problem is determined
implicitly by the solution set to the lower level problem. The MPEC formulated in Sect.
2 consists of the upper level optimization problem of the leader and the lower level
interrelated optimization problems of the followers, namely the consumers, creating a
nested structure.

The optimal solutions of the lower level equilibrium problem should satisfy the
Karush-Kuhn-Tucker (KKT) conditions, assuming they can be meaningfully formulat-
ed [29, 30]. An optimization problem in the general form is stated as follows:

min
x

f xð Þ; ð3Þ

subject to

h xð Þ ¼ 0; ð3aÞ

g xð Þ≤0; ð3bÞ
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where x ∈Rn is the optimization real variable, f(x) is the objective function and h(x),
g(x) are the equality and inequality constraints respectively, while the KKT conditions
are stated as follows:

∇x f xð Þ þ ∑
k

i¼1
λi∇xhi xð Þ þ ∑

m

j¼1
μ j∇xg j xð Þ ¼ 0; ð4Þ

hi xð Þ ¼ 0; for i ¼ 1; 2;…; k; ð5Þ

g j xð Þ≤0; for j ¼ 1; 2;…;m; ð6Þ

μ jg j xð Þ ¼ 0; for j ¼ 1; 2;…;m; ð7Þ

μ j≥0; for j ¼ 1; 2;…;m; ð8Þ

where f : Rn → R, h = (h1, h2,…, hk) : Rn → Rk, g = (g1, g2,…, gm) : Rn → Rm are
continuously differentiable real functions in the feasible region of x and λ = (λ1, λ2,
…, λk), μ = (μ1, μ2,…, μm) are the equality and inequality Lagrange multiplier vectors
respectively, while ∇x denotes the gradient with respect to x. The constraints in Eqs.
(6)–(8) are known as complementarity conditions and they can be also expressed as
follows:

0≤μ⊥g xð Þ≤0: ð9Þ

For the KKT conditions to be meaningful, therefore necessary conditions, they need to
meet a constraint qualification. Several constraint qualification criteria have been stated,
some of them especially for MPECs. One of the simplest, which is also satisfied in our
test problem, is the linear independence constraint qualification (LICQ) [31]. More-
over, the followers’ problems are convex, so the KKT conditions are also sufficient for
optimality. This means that in our problem, the lower level optimization problems
constraining the upper level problem can be replaced by their corresponding KKT
conditions.

Even after substituting the lower level optimization problems, the resulting problem
has a nonconvex feasible region and is difficult to be solved, mostly because of the
equality constraints in Eq. (7). There are however some techniques that can simplify
this, including, among others, the Fortuny-Amat McCarl linearization [32]. Using this
approach, complementarity constraints stated in Eq. (9) can be replaced by the follow-
ing set of linear constraints:
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0≤μ≤Mu; ð10Þ

0≤g xð Þ≤M 1−uð Þ; ð11Þ

where u is binary and M a large enough constant in order to avoid numerical ill-
conditioning. This technique transforms the MPEC into a mixed-integer programming
problem that is easier to be solved.

Consequently, there are algorithms and techniques for solving bilevel pro-
gramming problems under certain assumptions. However, traditional mathemat-
ical programming techniques cannot be applied in the case of nonconvex or/and
nondifferentiable functions either in the upper or in the lower level optimization
problems. Moreover, as the number of followers increases, the solutions’ search
space is expanded too. Therefore, a large-scale problem with many followers’
results in a set of feasible solutions that cannot be practically calculated using
complete enumeration of all the possible combinations, since it would be very
demanding as far as computational resources are concerned [33]. This is another
reason why a heuristic algorithm that can quickly converge to a solution close to
the optimal should be used.

4 Particle Swarm Optimization

Since the first variant of PSO was introduced [34], many modifications have been
proposed in order to improve the standard algorithm’s behavior and convergence rate.
PSO algorithms have the advantages and disadvantages associated with heuristics, but
they have gained wide recognition and are being used in all kind of difficult optimi-
zation problems [5].

According to the plain version of the algorithm, a population of N particles is
initialized in the search space A and then they move in it iteratively. Their
position shift is called velocity ui, i = 1, 2, …, N and their positions xi are
candidate solutions to the problem. Each particle can store the best position pi
it has visited, and all particles are informed about the best position pg that they
have generally visited. In every iteration, the velocity of each particle is updated
based on information from the previous steps of the algorithm and by taking into
consideration the general best position found so far. The respective mathematical
formulation of the updates in velocity and position for each particle i are given
in their vectorial form by:

ui t þ 1ð Þ ¼ χ ui tð Þ þ c1R1 pi tð Þ−xi tð Þð Þ þ c2R2 pg tð Þ−xi tð Þ
� �h i

; ð12Þ

xi t þ 1ð Þ ¼ xi tð Þ þ ui t þ 1ð Þ; ð13Þ
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where t is the iteration counter, R1 and R2 are random vectors with components
uniformly distributed within the interval [0, 1], c1 and c2 are weighting factors that
affect the search ability of PSO by biasing the velocity update or by changing the
magnitude of the search and χ is a parameter called constriction coefficient that acts as
inertia weight [35].

In the study at hand, a variant of PSO is used called unified particle swarm
optimization (UPSO) [36]. This variant combines the properties of the plain PSO
with a modification that takes into consideration the neighborhood of each parti-
cle. Using the neighborhood means that each particle belongs to a smaller group
of the swarm and some information is exchanged exclusively between the mem-
bers of this group. Thus, Eq. (12) represents the global velocity update and the
local best position pl found from the members of the neighborhood is used
similarly (instead of pg) in order to calculate the local velocity update. In this
study, particle segmentation into groups is based on their initialization sequence
but any other criterion can be chosen arbitrarily, thus influencing the definition of
local best. It should be noted that the global and local best positions are used in
the velocity update and not in the position update itself, so as to attract the
particles towards the respective promising areas of the search space without
forcing them to move there and trap into possible local minima or miss other
promising areas. In UPSO, the influence of the local and global velocity update, Li

and Gi respectively, is controlled by a real parameter u called unification factor.
The velocity update for each particle is finally given by:

ui t þ 1ð Þ ¼ uGi t þ 1ð Þ þ 1−uð ÞLi t þ 1ð Þ: ð14Þ

The global component of the velocity update controls the exploitation properties of the
algorithm whereas the local component is responsible for its exploration properties.
UPSO is preferred in this study since it offers an extension that improves the default
PSO algorithm. It is a very promising variant although the selection of u determines its
efficiency and depends on the problem [36].

In order to avoid premature termination of the algorithm or unnecessary
iterations after convergence, a suitable stopping criterion needs to be inserted
into the algorithm. There are several stopping criteria options for stochastic
algorithms, including maximum number of iterations, the number of function
evaluations and tolerance, among others [37]. In the present study, the maximum
number of iterations is used so as to study the particles’ iterative movement and
then an adaptive stopping criterion based on the change of the objective function
is added in order to improve the execution time of the algorithm.

The default PSO and UPSO algorithms tackle unconstrained optimization problems.
One way to address our constrained problem is to replace the objective function with a
nonstationary penalty function to avoid infeasible solutions [5, 38]. Penalty functions
are one of the most usual methods for addressing constrained problems since no
assumptions on the continuity and differentiability are required. For a general
constrained optimization problem,

min f xð Þ; ð15Þ
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subject to

gi xð Þ≤0; i ¼ 1; 2;…; k; ð15aÞ

the penalty function used in this study is defined as

F xð Þ ¼ f xð Þ þ h tð Þ H xð Þ; ð16Þ

where f(x) is the original objective function, h(t) is a penalty value depending on the
iteration and H(x) is a penalty factor of the form

H xð Þ ¼ ∑
k

θ qi xð Þð Þ qi xð Þγ qi xð Þð Þ
h i

; ð17Þ

where qi(x) = max {0, gi(x)}, θ(qi(x)) is a multi-stage assignment function and γ(qi(x)) is
the power of the penalty function.

Penalty functions are widely accepted and used but also have two consider-
able disadvantages. Specifically, they usually have a slow convergence rate and
most importantly large values of the penalty value h(t) could cause ill-condition-
ing. That is why under convexity assumptions another variation of UPSO is
tested in the present paper that combines particle swarm optimization with
Lagrange multiplier methods, in which the penalty idea is merged with the
primal-dual and Lagrangian philosophy [29]. In these methods, the penalty
function is not added to the objective function but rather to the Lagrangian
function resulting in the augmented Lagrangian function.

For the general optimization problem (3), using the quadratic penalty method, the
augmented Lagrangian function Lc is given by:

Lc x;λ;μð Þ ¼ f xð Þ þ λTh xð Þ þ c
2

h xð Þk k2

þ 1

2c
∑
j

max 0;μ j þ cg j xð Þ
n o� �2

−μ2
j

� �
; ð18Þ

where λ and μ are the equality and inequality Lagrange multiplier vectors respectively,
j denotes the jth coordinate of μ and c is a positive penalty parameter.

The method consists of solving a sequence of problems of the form:

minLck x;λk ;μk� 	
; ð19Þ

subject to:

x∈X ; ð19aÞ

where initial values are given to c0 and vectors λ0, μ0 and the sequences are updated
according to
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0 < ck < ckþ1;∀k; ck→∞; ð19bÞ

λkþ1 ¼ λk þ ckh x λk ;μk ; ck
� 	
 �

; ð19cÞ

μkþ1
j ¼ max 0;μk

j þ ckg j x λk ;μk ; ck
� 	
 �n o

: ð19dÞ

The selected initial values determine the efficiency of the algorithm. Also, it is not
necessary to increase ck to infinity for the method to be converged. In this way ill-
conditioning can be avoided and by taking also into account the improved convergence
rate, this method can be superior to simple penalty functions. For solving these
sequential optimization problems, the UPSO algorithm is used. The advantage as
already mentioned is that the particle swarm algorithms can deal with any objective
function even though the multiplier method imposes certain assumptions in order to be
effective.

The plain PSO algorithm and subsequently the UPSO variant can solve a single
optimization problem thus they need to be extended in order to address problems that
seek equilibria of Nash and Stackelberg games with many players. In the case of Nash
games, players decide simultaneously based on other players’ strategies. Moreover, in
our problem all the players’ optimization problems are interdependent since their
decisions affect the aggregated energy demand and subsequently the price. Therefore,
we assume that each consumer is informed about the aggregated demand of all
consumers and then the inner optimization problems described by Eq. (1g) are solved
simultaneously by different groups of swarms given the fee parameter. Each consumer
knows his own expected demand and decisions so, given the aggregated demand, he
can calculate the sum of other players’ decisions and optimize his own objective
function, then, each iteration yields an updated aggregated energy demand and price
so that he can take it again into consideration and adjusts his decision. This process
reminds of a dynamic game and is repeated until all the consumers’ decisions converge
to Nash equilibrium. The hypothesis of informing a consumer about the aggregated
demand instead of each other player’s decision separately is also consistent with the
operation of an energy market since such information are available to market
participants.

This approach could also be used effectively in Stackelberg games. The inner
optimization problems can be solved with multiple interdependent swarms as it is
already described, and the results will be available to the leader who can then decide to
change the offered fee. This process will be continued iteratively until the leader is
satisfied from the outcome. However, this would be more of a trial and error approach
instead of an optimization algorithm. Our purpose is to compare the proposed meth-
odology with the mathematical programming framework for bilevel problems; thus, the
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inner optimization problems were substituted by their KKT conditions as they are
described in Sect. 3 and the resulting constrained optimization problem was solved
using the UPSO algorithm. As in mathematical programming, the resulting problem is
difficult to be solved especially due to constraints of Eq. (7). To simplify this issue,
some conditions were inserted in order to exploit the structure of the specific problem
by calculating some Lagrange multipliers and variables that are easy to be decided
without the need for swarm optimization (e.g., quantity produced qpr is cheaper than
qex; therefore, it is equal either to the aggregated consumers’ energy demand or to qmax

depending on whether the constraint (1a) is binding or not).
In summary, in Fig. 1, the high-level flowchart of the proposed method is exhibited

that presents the sequence of the steps of the algorithm.

Fig. 1 High-level flowchart of the proposed algorithm
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5 Results

In this section, we study the effectiveness of the proposed algorithm by solving some
numerical examples and then we compare these solutions with the optimal solutions
obtained by the mathematical programming techniques presented in Sect. 2 (expressed
to three decimal places). Moreover, by studying the solutions we can deduce if a VLC
program would be effective in an energy market and how each player is affected by it.

The parameters of the UPSO are selected as in the contemporary standard PSO [36],
and the execution is performed with the unification factor u = 0.5 so that the algorithm is
balanced between its local and global components. The neighborhood radius is assumed
to be 1 and the swarm size equal to 10. Additional examples with different parameters
can be performed in order to study how they affect the efficiency and effectiveness of the
algorithm for this particular problem. In the examples, the modified penalty UPSO
resulting from Eqs. (16)–(17) was used, while the values of the penalty parameters were
based on results of other studies [5, 38, 39]. However, the penalty value h(t) used was
increased through trial and error, trying to avoid both ill-conditioning and constraint
violations that were initially observed. In the examples that were solved using the
modified multiplier UPSO of Eq. (19), the quadratic penalty function was used as
already mentioned in Sect. 4. The maximum number of iterations is set to 800 and the
added stopping criterion terminates the execution of the algorithm if the change of the
objective function is less than 10−5 for 100 consecutive iterations. However, the stopping
parameters can be modified according to the quality of the obtained results.

Firstly, some examples for the case of Nash equilibria are presented. We assume that
the leader just wants to study the interactions among the followers without optimizing
his objective function. In this case he can experiment with various fee schemes that will
lead to different demand response results from the consumers. Therefore, we need to
solve the game of the followers by seeking Nash equilibrium. In these examples, we
present only the results for the decision variables qd, i since the rest can be easily
calculated afterwards. The algorithm is stochastic and therefore the resulting values
correspond to the average solutions of the considered 20 experiments.

Next, two examples of a Stackelberg game are presented, where one leader seeks to
optimize his fee offer based on the reactions of two consumers. In these examples, the
decision variables are the fee parameter, each consumer’s demand and the amount of
the generated energy. Based on these, the optimal or near optimal cost J of the leader
can be deduced. Finally, a more complex problem with one leader, fifteen followers
and two different fees is solved. Markets have a lot of participants that can be
categorized according to their characteristics [40]. In energy markets, demand response
programs are more usually offered to large consumers such as industries and commer-
cial buildings, which are fewer but accountable for a large percentage of total con-
sumption. These types of customers can be grouped in a few categories based on their
sector and activity. Therefore, the last example is more realistic and useful in studying
the players’ interactions. However, as already mentioned the massive roll-out of smart
meters in low voltage customers will render possible the implementation of such
programs to residential customers. In this case, segmentation results in more categories
since residential energy usage depends on location, building, and equipment charac-
teristics, as well as demographic data.
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The GAMS solver was used in order to compare the results with those of the
mathematical programming framework (in the case that it was possible). Specifically,
the DICOPT was used that is a program for solving mixed-integer nonlinear program-
ming (MINLP) problems. The MINLP algorithm inside DICOPT solves a series of
nonlinear programming (NLP) and mixed-integer programming (MIP) sub-problems
using other solvers like CONOPT and CPLEX, respectively [41].

5.1 Nash Equilibrium with Two Consumers

In this case, it is assumed that there are two followers, the expected total demand is 12
(6 for each consumer) and that b1 = 10. Moreover, it is assumed that the fee is given by
a linear function; therefore, m = 1. The parameters that were used in Example 1 are r1 =
11, c1, 1 = 4, c1, 2 = 2.5, n1 = n2 = 1, qmin, 1 = 4.1, qmin, 2 = 3.7. Respectively in Example 2
the parameters are: r1 = 10, c1, 1 = 7, c1, 2 = 5, n1 = 1, n2 = 2, qmin, 1 = 3, qmin, 2 = 3.2, while
in Example 3, they are r1 = 6, c1, 1 = 3.5, c1, 2 = 4, n1 = n2 = 2, qmin, 1 = qmin, 2 = 2.5. In
these simple examples, linear and nonlinear consumer cost functions are tested using
both the UPSO penalty variant and the UPSO multiplier variant proposed since all
assumptions hold, and the results of the algorithm are compared with those obtained
using GAMS. For both UPSO algorithms, the same penalty value was used. The initial
values of λ0, μ0 were given arbitrarily.

In Table 1, the resulting values of demand variables qd, i are presented. We observe
that both proposed algorithms converge very close to the optimal solutions obtained
from GAMS and the differences can be considered insignificant especially for the
multiplier variant. Using the same hardware, the specialized software solved the
problem in 2.013 s, the penalty UPSO algorithm needed 4.168 s and the multiplier
UPSO algorithm 3.839 s respectively to perform the considered 20 experiments.

The standard deviation of the results obtained from the first variant is very small,
meaning that we can use this algorithm in order to obtain a solution very close to the
optimal with less experiments or even with only one execution of the algorithm. The
second variant converges always to the same solutions setting tolerance to 0.001;
therefore, only one execution is needed to converge in only 0.192 s. The UPSO
algorithms’ execution time is reduced by circa 70% after the implementation of the
adaptive stopping criterion, meaning that most iterations were not necessary since the
algorithm converges very quickly to an almost optimal solution. These observations

Table 1 Results of Nash game with two consumers

Method Example 1 Example 2 Example 3

Modified penalty qd, 1 = 4.108 qd, 1 = 2.998 qd, 1 = 4.289

UPSO qd, 2 = 3.710 qd, 2 = 4.007 qd, 2 = 4.486

Modified multiplier qd, 1 = 4.101 qd, 1 = 3.001 qd, 1 = 4.287

UPSO qd, 2 = 3.701 qd, 2 = 4.001 qd, 2 = 4.501

GAMS qd, 1 = 4.100 qd, 1 = 3.000 qd, 1 = 4.286

solver qd, 2 = 3.700 qd, 2 = 4.000 qd, 2 = 4.500
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indicate that the proposed algorithms are effective and very efficient and they could
even be used to seek Nash equilibria in real-time problems.

5.2 Nash Equilibrium with Five Consumers

The main advantage of the developed penalty UPSO algorithm is that it can solve
nonconvex, large-scale, complex problems without the need for continuity or differen-
tiability assumptions as far as the objective functions are concerned. In the next
example, we seek the Nash equilibrium among five consumers, each one expecting
to demand 6 units of energy. Therefore, in Example 4, the expected total demand is 30
and b1 is considered to be 10 again. The rest of the parameters are: r1 = 22, qmin, 1 = 2,
7, qmin, 2 = 3, qmin, 3 = 3.3, qmin, 4 = 3.6, qmin, 5 = 3.9 and the comfort cost Ci for each
consumer i is given by:

Ci ¼
4:5qc;1; qc;1 < 1;
5; 1≤qc;1≤2;
8q2c;i; qc;1 > 2:

8<
:

The average along with the most frequent solutions out of the 20 experiments is
presented in Table 2.

In this example, the consumers have the same expected demand and comfort cost
and they differ only as far as their minimum needs are concerned. Observing the most
frequent solutions for qd, 1 and qd, 2, it is implied that the optimal solution for consumers
1 and 2 of this example is 3.250 since qmin, ι is not a binding constraint. For consumers
3 and 4 the optimal solutions are equal to their basic needs since qmin, ι’s become
binding for them, whereas consumer 5 has increased energy needs and therefore the
third branch of his cost function becomes an unprofitable choice.

It is also observed that the average solutions are greater compared to the respective
most frequent ones. This happens probably because of the stricter penalty applied in
order to avoid constraint violations; however, the differences are not significant and the
algorithm generally converges very close to the optimal solutions.

5.3 Stackelberg Equilibrium with One Leader and Two Followers

In these examples, we seek to find the Stackelberg equilibrium optimizing the leader’s
and the followers’ objective functions at the same time. Therefore, except for the

Table 2 Results of Nash game with five consumers

Example Average solutions Most frequent solutions

Example 4 qd, 1 = 3.314 qd, 1 = 3.250

qd, 2 = 3.336 qd, 2 = 3.250

qd, 3 = 3.427 qd, 3 = 3.300

qd, 4 = 3.647 qd, 4 = 3.600

qd, 5 = 4.005 qd, 5 = 4.000
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consumers’ demand, the leader needs to decide the quantity produced and the fee
offered. We assume again that the expected total demand is 12 (6 for each consumer),
b1 = 10 and m = 1. The penalty UPSO algorithm is executed once and the results are
compared with those obtained from GAMS using the mathematical programming
techniques presented in Sect. 3.

The parameters that were used in Example 5 are cpr = 8, cex = 50, qmax = 8, c1, 1 = 5.5,
c1, 2 = 6.5, n1 = n2 = 2, qmin, 1 = 3, qmin, 2 = 3.5. Respectively, in Example 6, they are:
cpr = 10, cex = 40, qmax = 7, c1, 1 = 2.5, c1, 2 = 4, n1 = n2 = 2, qmin, 1 = 4, qmin, 2 = 2. The
results as far as the players’ decisions and the leader’s respective cost J are presented in
Table 3.

We observe that the results for qpr coincide since this decision can be derived easily
from a condition taking into account the constraint (1a). In Example 5, the consumers’
decisions and the leader’s resulting cost have minor differences in both solutions but
the fee parameter r1 differs by almost 10%. On the other hand, in Example 6, the two
solutions can be considered identical. In Fig. 2, it is presented how the swarm of
Example 6 converges to the final value of r1. The swarm particles that correspond to
different colors initiate from random positions in the search space and they move closer
to the optimal value after every iteration of the algorithm until they converge.

The results suggest that the proposed algorithm is effective also in Stackelberg
games with one leader, but in some cases, there could be errors as far as the values of
some decision variables are concerned. This could be due to local minima that are very
close to the global one, since the problem is very complex and includes nonlinearities
and nonconvexities. However, even in these cases, the leader would have a cost very
close to the optimal one. The algorithm’s maximum number of iterations in these
examples was doubled since the problem is more complex, and the execution time is
circa 9 s while GAMS needed 2.42 s, verifying that Stackelberg games are more
difficult to be solved than Nash games. The insertion of the adaptive stopping criterion
did not improve the execution time because the particles seem to oscillate around the
best position. The variations are minor, so by relaxing the stopping criterion to a change
of 10−3 leads to convergence in circa 3.5 s. Therefore, in this type of games, the
algorithm is not as efficient as in previous examples, but its main advantage is that it

Table 3 Results of Stackelberg game with one leader and two followers

Method Example 5 Example 6

Modified penalty UPSO qpr = 8 qpr = 7

qd, 1 = 5.088 qd, 1 = 4.439

qd, 2 = 5.228 qd, 2 = 5.024

r1 = 5.017 r1 = 3.903

J = − 723.650 J = − 572.927
GAMS solver qpr = 8 qpr = 7

qd, 1 = 4.992 qd, 1 = 4.439

qd, 2 = 5.147 qd, 2 = 5.024

r1 = 5.545 r1 = 3.902

J = − 724.909 J = − 572.927
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can be used even if the leader’s objective function is nonconvex or nondifferentiable
like that in Sect. 5.2.

The UPSO and the penalty function parameters used were obtained from general
tests in various optimization problems so proper configuration of the algorithm for this
type of problems could improve it furthermore. The costs of each player depending on
whether the VLC program is implemented or not, are presented in Table 4 where the
cost J corresponds to the leader and the costs J1, J2 correspond to the two followers
respectively. No price elasticity was assumed. Therefore, the two consumers without a
VLC program would have the same costs since they are expected to have the same
demand. In this case, leader’s cost depends on parameters cpr and cex. However, if a
VLC program is implemented, two observations can be made. Firstly, consumers are
motivated to reduce their demand depending on the fee offered. This reduction depends
on their basic needs and their cost function, thus differentiating the consumers and this
is something the leader should take into consideration. Secondly, the leader is benefited
too by the curtailment since he will not have to supply very expensive energy. In case
the leader’s production can satisfy all the expected demand, he does not need to
implement a VLC program and the result would be an equilibrium with less demand
and at a lower price.

Fig. 2 Swarm convergence regarding r1 in Example 6

Table 4 Players’ costs with and without a VLC program

Method Example 5 Example 6

Without VLC J1 = 720 J1 = 720

J2 = 720 J2 = 720

J = − 576 J = − 370
With VLC J1 = 506.096 J1 = 420.083

J2 = 521.823 J2 = 475.479

J = − 724.909 J = − 572.927
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5.4 Stackelberg Equilibrium with One Leader and Many Followers

In practice, the number of followers participating in a VLC program may be quite large.
Additionally, the leader may prefer to offer different fees according to the participants’
characteristics. The scalability of the proposed methodology makes it possible to solve
also more complex problems with a lot of followers. In the following example, we
assume that there are fifteen followers some of them with quadratic and some others
with linear cost functions. There are also two fee parameters: r1 for followers with small
expected demand and r2 for those who have large expected demand and therefore they
can be considered as more important for the success of the VLC program. The
parameters that were used in Example 7 are cpr = 8, cex = 50, qmax = 40 the inputs and
outputs for each follower are presented in Table 5.

As far as the leader is concerned, qpr = 40, qex = 36.725 and his cost after
implementing the VLC program is equal to 9034.800 instead of 96,960 that would
be otherwise. Moreover, the market price and the total energy demand also dropped by
more than 26% because of the VLC program. As far as the fees are concerned r1 = 6
and r2 = 5, implying that followers with large expected demand could be satisfied with
a smaller fee since they are compensated for larger curtailed quantities; however, more
examples need to be studied in order to conclude about the followers’ behavior. One
additional observation is that all the players (both the leader and the followers) can be
benefited by the implementation of a suitable VLC program.

Table 5 Example of a Stackelberg game with one leader and 15 followers

Player i Player’s characteristics Results

Cost Ci Fee Fi qmin, i q*i qd, i Ji without VLC Ji with VLC

Follower 1 0:1q2c;1 r1qc, 1 0.5 2 0.500 2080 374.850

Follower 2 0.1qc, 2 r1qc, 2 1 2 1 2080 761.350

Follower 3 0:5q2c;3 r1qc, 3 0.1 1 0.100 1040 71.730

Follower 4 1:5q2c;4 r1qc, 4 1 1 1 1040 767.250

Follower 5 1:5q2c;5 r1qc, 5 2 4 2 4160 1528.500

Follower 6 3q2c;6 r1qc, 6 1 3 1 3120 767.250

Follower 7 3qc, 7 r1qc, 7 1 3 1 3120 767.250

Follower 8 q2c;8 r2qc, 8 3 9 4 9360 3069.000

Follower 9 qc, 9 r2qc, 9 3 9 3 9360 2307.750

Follower 10 2:5q2c;10 r2qc, 10 4 10 8 10,400 6138.000

Follower 11 2:5q2c;11 r2qc, 11 8 10 8 10,400 6138.000

Follower 12 4q2c;12 r2qc, 12 6 12 10.750 12,480 8247.937

Follower 13 5q2c;13 r2qc, 13 6 12 11 12,480 8439.750

Follower 14 8q2c;14 r2qc, 14 5 13 12.375 13,520 9494.719

Follower 15 8qc, 15 r2qc, 15 5 13 13 13,520 9974.250
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6 Synopsis and Concluding Remarks

Market deregulation is a field where interactions among many stakeholders can be
studied. These interactions lead to complex optimization problems that usually include
game theory notions since the corresponding equilibria among the players need to be
found. The interdependent optimization problems are very difficult to be solved using
traditional optimization techniques, rendering metaheuristic algorithms more appealing.

In this study, the problem of subsidizing the consumers through a VLC program to
reduce their energy demand was described and formulated. An extension of UPSO
algorithm was used in order to solve this MPEC and calculate the corresponding Nash
and Stackelberg equilibria. Also, the algorithm can be used in other bilevel problems as
well. The proposed algorithm includes proper reformulation of the problem and
multiple swarms that solve the players’ optimization problems simultaneously, con-
verging to an equilibrium without continuity or differentiability assumptions. A mod-
ification of UPSO algorithm was also proposed and used to calculate simple Nash
equilibria resulting in even more promising results. On the other hand, further study is
needed as to how the necessary assumptions for multiplier method restrict the main
advantages of metaheuristic algorithms.

The numerical results presented suggest that the algorithm converges to a Nash
equilibrium very efficiently and can also converge to a Stackelberg equilibrium.
Suitable configuration of the algorithm for this type of problems by experimenting
with the unification factor of UPSO as well as with the PSO algorithm’s and penalty
function’s parameters could improve the results. Additionally, the results could be
improved by properly configuring and applying other related computational intelli-
gence methods (see, e.g., [42, 43]).

Moreover, based on the results both the leader and the consumers can be benefited
from a VLC program, thus load curtailment can be considered an effective incentive
mechanism in order to reduce demand peaks in energy markets. The developed
decision support tool can be used in designing suitable VLC programs according to
the number and type of consumers that are expected to participate. Complex large-scale
demand response programs need proper planning, but simple VLC programs could be
used even in real-time scheduling judging by the high rate of convergence.

Further research could address the uniqueness of the equilibria or to study the case
whether the proposed algorithm can also be extended to address games with many
leaders and many followers (equilibrium problems with equilibrium constraints
(EPECs)). In these cases, the interactions among the players will be useful in studying
large-scale and realistic games in energy markets with many players in each level.
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