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Abstract

This paper presents a comprehensive survey of methods which can be utilized to search for solutions to
systems of nonlinear equations (SNEs). Our objectives with this survey are to synthesize pertinent literature
in this field by presenting a thorough description and analysis of the known methods capable of finding one or
many solutions to SNEs, and to assist interested readers seeking to identify solution techniques which are well
suited for solving the various classes of SNEs which one may encounter in real world applications.

To accomplish these objectives, we present a multi-part survey. In part one, we focus on root-finding ap-
proaches which can be used to search for solutions to a SNE without transforming it into an optimization
problem. In part two, we will introduce the various transformations which have been utilized to transform a
SNE into an optimization problem, and we discuss optimization algorithms which can then be used to search
for solutions. In part three, we will present a robust quantitative comparative analysis of methods capable of
searching for solutions to SNEs.

Keywords: systems of nonlinear equations, localization of zeros, computation of roots, topological degree, total
number of solutions and extrema, interval methods, symbolic computation, tensor methods, homotopy methods

1 Introduction

This paper presents part one of a survey on methods for finding one or many solutions to a system of nonlinear
equations (SNE):

Fm(x) = Θm ≡ (0, 0, . . . , 0)> ⇐⇒



f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...

fm(x1, x2, . . . , xn) = 0,

(1)

where Fm = (f1, f2, . . . , fm) : Dn ⊂ Rn → Rm, where f1, f2, . . . , fm are real-valued continuous or continuously
differentiable functions on the domain Dn, and where at least one of f1, f2, . . . , fm is nonlinear. For example,
consider the system of transcendental equations

F2(x) = Θ2 ≡ (0, 0)> ⇐⇒

{
f1(x1, x2) = x1 − x1 sin(x1 + 5x2)− x2 cos(5x1 − x2) = 0,

f2(x1, x2) = x2 − x2 sin(5x1 − 3x2) + x1 cos(3x1 + 5x2) = 0,
(2)

which is comprised of two transcendental equations of two unknowns (See Figure 1).
Finding one or more solutions to a SNE is a challenging and ubiquitous task faced in many fields including

chemistry [1, 2, 3], chemical engineering [4], automotive steering [5], power flow [6, 7], large-scale integrated circuit
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Figure 1: An example of a SNE with two transcendental equations of two unknowns as introduced by Eq. (2):
(Blue): f1(x1, x2) = x1 − x1 sin(x1 + 5x2) − x2 cos(5x1 − x2) = 0; (Red): f2(x1, x2) = x2 − x2 sin(5x1 − 3x2) +
x1 cos(3x1 + 5x2) = 0. Solutions to this SNE are defined as the points where the blue and red contours intersect.
Finding all of the points within a certain region which satisfy both equations is a challenging task.

designs [8], climate modeling [9], materials engineering [10], robotics [11, 12, 13, 14], nuclear engineering [15],
image restoration [16], protein interaction networks [8], neurophysiology [17], economics [18], finance [19], applied
mathematics [20], physics [21], finding string vacua [22], machine learning [23, 24], geometric constraint solving
(used in computer aided design) [25], and geodesy [26, 27] among others. The problem of solving even a system
of polynomial equations has been proven to be NP-hard [28]. Furthermore, it has also been proven [29] that no
general algorithm exists for determining whether an integer solution exists for a polynomial equation with a finite
number of unknowns and only integer coefficients. The latter has been known as Hilbert’s 10th problem.

1.1 Notation / Scientific Style

Throughout this paper, we utilize x = (x1, x2, . . . , xn)> ∈ D ⊂ Rn to denote a real vector within the bounded
domain D. Furthermore, we utilize x∗ = (x∗1, x

∗
2, . . . , x

∗
n)> ∈ D ⊂ Rn to denote a real solution to a SNE such that all

equations in the SNE are satisfied (Fm(x∗) = 0). In an iterative method, we utilize xk = (xk1 , x
k
2 , . . . , x

k
i , . . . x

k
n)> ∈

D ⊂ Rn for k = 0, 1, . . . to denote the vector found during the k−th iteration of the iterative method. Here, xki
denotes the i−th coordinate of the vector xk.

1.2 Terminology

Although we refer to Eq. (1) as a system of nonlinear equations (SNE), such systems have been referred to in a
variety of different ways in literature. For example, articles [30, 31, 32, 33, 34, 35] utilize the abbreviation “SNLE”
to refer to a system of nonlinear equations, and article [36] uses the abbreviation “SoNE”. Other papers refer to
Eq. (1) as a nonlinear system of equations, and use the abbreviations “NSE” [37, 38] and “NLS” [39]. Eq. (1) has
also been referred to as a nonlinear equation system (NES) [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54].
The survey in article [55] uses the terminology Nonlinear Equations (NEs) to refer to a system of one or more
nonlinear equations.

When m > n, a SNE can be referred to as an overdetermined SNE, and when n > m, a SNE can be referred to
as an underdetermined SNE. When m = n, a SNE can be referred to as a square SNE [56]. Furthermore, a SNE is
considered to be consistent if a solution exists which satisfies all equations [25].

For a square]/ SNE, a solution x∗ = (x∗1, x
∗
2, . . . , x

∗
n)> of the SNE Fn(x) = Θn or equivalently a zero x∗ of
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the function Fn(x) or a root x∗ of the function Fn(x) is called simple if for the determinant of the corresponding
Jacobian matrix:

JFn
(x) ≡ F ′n(x)ij ≡

{
∂fi(x)

∂xj

}
ij

≡



∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xn


, (3)

at x∗ it holds that det JFn
(x∗) 6= 0, otherwise it is called multiple. The problem of conservation and decomposition

of a multiple root into simple roots in the case of systems of homogeneous algebraic equations has been tackled
in [57]. This approach can be applied to high dimensional CAD where it is sometimes required to compute the
intersection of several hypersurfaces that are a perturbation of a set of original unperturbed hypersurfaces.

When Fn satisfies the monotonicity condition:(
Fn(x)− Fn(y)

)>
(x− y) > 0, ∀x, y ∈ Rn, (4)

the corresponding SNE can be referred to as a system of monotone nonlinear equations [58]. Furthermore, Fn is
considered to be Lipschitz continuous if there exists L > 0 such that

‖Fn(x)− Fn(y)‖2 6 L‖x− y‖2, ∀x, y ∈ Rn. (5)

Many of the root finding methods described in Section 3 are guaranteed to converge to a solution when applied to
SNEs that satisfy both the monotonicity and Lipchitz continuity conditions (the hybrid spectral methods introduced
in [59] for example).

1.3 Comparison to other surveys

Other surveys discussing solution techniques for SNEs include [60] and [55]. We have decided to conduct this
comprehensive literature review because many new solution techniques for SNEs have been introduced since the
publication of [60] in 1994, and because the recent survey presented in [55] focuses mainly on methods which first
convert a SNE into an optimization problem, and then search for multiple solutions to the optimization problem
using Intelligent Optimization Algorithms (IOAs). The IOAs discussed in article [55] are primarily metaheuristics
for global optimization. Although the survey in article [55] provides a very nice discussion of IOAs for solving SNEs
reformulated as optimization problems, many of the IOAs they discuss are only introduced at a very high level,
only eight IOAs were tested in their computational study, and the IOAs were evaluated on SNEs comprised of 20
equations or less. Also, article [55] only briefly mentions methods which can be used to search for solutions to SNEs
without transforming them into optimization problems.

We would like to present a broader survey which covers in detail the large set of methods which can be used
to solve a SNE without transforming it into an optimization problem (i.e. homotopy and symbolic computation
methods). These methods are our main focus in part one of this survey. In part two, we will expand upon article
[55] by introducing additional reformulation techniques and optimization algorithms which have been used to solve
SNEs, and by discussing in much more detail many optimization algorithms which were only briefly introduced in
article [55]. This will allow us to appropriately set the stage for the comprehensive empirical study we will present
in part three of this survey. Furthermore, we believe it is imperative to introduce the reader to a technique for
determining the number of solutions to a SNE that exist within a bounded domain. Such techniques are of critical
practical importance for those interested in finding all solutions to a SNE that exist within a domain of interest.

1.4 Organization of this survey

We begin this survey by introducing a method which can be used to determine the total number of solutions to
a SNE that exist within a given bounded domain. By determining the number of solutions to a SNE which exist
within a bounded domain of interest, in the event that no solutions exist, one can avoid spending time and resources
searching for solutions all together. Alternatively, if one knows that a specific number of solutions exist to a SNE
within a bounded domain of interest, one can continue to search for solutions until the desired number of solutions
are found. Next, we introduce root-finding methods which have been utilized in literature to search for solutions
to a SNE without transforming it into an optimization problem. We conclude our paper by introducing additional
methods which have been used to attempt to solve SNEs, and by highlighting promising areas for future research.
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2 Determining the number of solutions to a SNE in a bounded domain

The knowledge of all the solutions of a system of nonlinear equations and/or all the extrema of a function is of
major importance in various fields. The total number of the solutions of a system of nonlinear equations can be
obtained by computing the topological degree. Suppose that the function Fn = (f1, f2, . . . , fn) : Dn ⊂ Rn → Rn is
defined and is two times continuously differentiable in a bounded domain Dn of Rn with boundary b(Dn). Suppose
further that the solutions of Fn(x) = Θn are not located on b(Dn), and that they are simple (that the determinant
of the Jacobian of Fn at these solutions is non-zero). Then the topological degree of Fn at Θn relative to Dn is
denoted by deg[Fn,Dn, Θn] and can be defined by the following relation:

deg[Fn,Dn,Θn] =
∑

x∈F−1
n (Θn)

sgn det JFn
(x),

where det JFn(x) denotes the determinant of the Jacobian matrix and sgn defines the three-valued sign function.
The above definition can be generalized when Fn is only continuous [61].

It is evident that, since deg[Fn,Dn, Θn] is equal to the number of simple solutions of Fn(x) = Θn which give
positive determinant of the Jacobian matrix, minus the number of simple solutions which give negative determinant
of the Jacobian matrix, then the total number Ns of simple solutions of Fn(x) = Θn can be obtained by the value
of deg[Fn,Dn, Θn] if all these solutions have the same sign of the determinant of the Jacobian matrix. Thus, Picard
considered the following extensions of the function Fn and the domain Dn [62, 63]:

Fn+1 = (f1, f2, . . . , fn, fn+1) : Dn+1 ⊂ Rn+1 → Rn+1, (6)

where fn+1 = y det JFn
, Rn+1 : x1, x2, . . . , xn, y, and Dn+1 is the direct product of the domain Dn with an

arbitrary interval of the real y-axis containing the point y = 0. Then the solutions of the following system of
equations:

fi(x1, x2, . . . , xn) = 0, i = 1, 2, . . . , n,

y det JFn
(x1, x2, . . . , xn) = 0,

are the same simple solutions of Fn(x) = Θn provided that y = 0. Obviously, the determinant of the Jacobian
matrix obtained for the function (6) is equal to (det JFn

(x))2 which is always positive. Thus, the total number Ns

of the solutions of the system Fn(x) = Θn can be obtained by the following value of the topological degree:

Ns = deg[Fn+1,Dn+1,Θn+1].

For example, in the one dimensional case, using the above Picard’s extensions it is proved that the total number
of simple solutions Ns of the equation f(x) = 0, where f : (a, b) ⊂ R → R is twice continuously differentiable in a
predetermined interval (a, b), is given by the following relation [62, 63]:

Ns = − 1

π

[
ε

∫ b

a

f(x) f ′′(x)− f ′2(x)

f2(x) + ε2f ′2(x)
dx+ arctan

(
εf ′(b)

f(b)

)
− arctan

(
εf ′(a)

f(a)

)]
, (7)

where ε is a small positive constant. Note that Ns was shown to be independent of the value of ε. Also, the above
approach can be applied for computing the number of multiple solutions. Obviously, the total number Ne of the
extrema of f ∈ C3 i.e. x ∈ (a, b) such that f ′(x) = 0 can be obtained using the above formula (7). For details of the
topological degree we refer the interested reader to the books [64, 65, 66, 67, 61, 68]. Details of the computation of
the value of the topological degree and its usefulness as well as some applications and issues related to the number
of zeros can be found for example in [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83].

Article [84] also discusses utilizing the topological degree to determine the existence of robust solutions to a
SNE.

3 Root finding methods

This section discusses root finding methods which have been utilized to search for solutions to SNEs. Specifically,
Section 3.1 - Section 3.10 discuss methods which have been utilized to search for a single solution to a SNE, and
Section 3.11 discusses deflation techniques which can be used to compute further solutions. Some of the root finding
methods introduced in this section are discussed in more detail than others, and after we introduce fundamental
root finding methods, we place a particular emphasis on promising methods which do not appear to be widely
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discussed in recent literature. We also briefly introduce some of the more well known root finding methods such as
Quasi-Newton methods, and we cite relevant literature for the interested reader to refer to.

Although many of the root finding methods described in this section are guaranteed to converge to a solution
when applied to SNEs that satisfy certain conditions such as monotonicity (Eq. (4)) and Lipschitz continuity (Eq.
(5)), none of the methods described in this section are guaranteed to converge to a solution on all classes of SNEs.
For example, the root finding method proposed in article [58] was proven to converge on systems of monotone
nonlinear equations which satisfy additional regularity conditions, but the proposed method is not guaranteed to
converge on all SNEs.

Many of the root finding methods discussed in this section are specialized at solving particular classes of SNEs.
For example, Section 3.5 discusses a tensor-free Chebyshev-Halley method designed to solve SNEs that are large,
sparse, and which may have ill-conditioned or singular Jacobian matrices at a solution [85].

3.1 Classical Newton’s and Broyden’s methods for finding a single solution

Newton’s method [86, 87, 61, 88] for finding roots is a well known approach which can be utilized to find a single
solution to a SNE. Starting at a “good” initial guess or approximate solution x0 = (x01, x

0
2, . . . , x

0
n)> of a system of

n nonlinear real equations in n real unknowns, when Fn(x) is Lipschitz continuous and the Jacobian matrix JFn
(x)

of Fn(x) is available, Newton’s method can be used to iteratively find elements of a sequence converging towards a
true solution x∗ = (x∗1, x

∗
2, . . . , x

∗
n)> with a quadratic rate of convergence. Newton’s method attempts to calculate

a new approximate solution xk+1 from xk via

xk+1 = xk − JFn

(
xk
)−1

Fn

(
xk
)
, k = 0, 1, 2, . . .

Alternatively, instead of calculating the inverse of the Jacobian matrix, one often can solve the system of linear
equations:

JFn

(
xk
)
sk = −Fn

(
xk
)
, k = 0, 1, 2, . . . (8)

to find the Newton step sk = xk+1 − xk. Thus, Newton’s method using a initial guess x0 for each iteration
k = 0, 1, 2, . . . performs the following steps:

(a) Solve: the system of linear equation JFn

(
xk
)
sk = −Fn

(
xk
)

for sk.

(b) Set: xk+1 = xk + sk.

In many cases, Step (b) is given by xk+1 = xk + λsk where λ is selected to guarantee decrease in ‖Fn‖ (see [87]).
Many expansions upon Newton’s method for finding roots have been introduced in literature, and most of these

expansions are focused on accelerating the rate of convergence. For example, articles [89, 90, 91, 92, 93, 94] present
new techniques based upon Newton’s method for finding roots and quadrature rules to accelerate convergence.
Newton’s method can also be augmented with higher order information to accelerate convergence towards an
approximation of a true solution x∗. Overall, Newton’s method for finding roots seeks to approximate the solution
of a nonlinear system of equations by solving iteratively a sequence of systems of linear equations. In cases where
the Jacobian matrix is singular, we refer the interested reader to articles [95, 96]. Convergence results for SNEs
which have a Jacobian with a constant rank in the vicinity of a solution are presented in articles [97, 98]. Dimension-
reducing modifications of Newton’s method that are able to tackle efficiently and effectively, among others, almost
linear systems can be found in [99, 100, 101, 102, 103].

In a similar approach, Broyden’s method [104, 86, 87, 61, 88] using an initial guess x0 and an initial matrix B0

such that detB0 6= 0, for each iteration k = 0, 1, 2, . . . performs the following steps:

(a) Solve: the system of linear equations Bks
k = −Fn

(
xk
)

for sk.

(b) Set: xk+1 = xk + sk.

(c) Set: yk = Fn

(
xk+1

)
− Fn

(
xk
)
.

(d) Set: Bk+1 = Bk +
1(

sk
)>
sk

(
yk −Bks

k
)(
sk
)>
.

A good “choice” of B0 is B0 = JFn

(
x0
)
. Obviously, by avoiding this choice Broyden’s method does not require

the computation of the Jacobian matrix. The effectiveness of Broyden’s method and Newton’s method on different
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classes of SNEs has been studied, for example, article [105] compares the effectiveness of Newton’s method, Broyden’s
method, and other methods at solving sparse SNEs.

There are many techniques that can be utilized to solve the system of linear equations produced by each
iteration of Newton’s or Broyden’s method for finding roots. Two widely used methods for solving a system of
linear equations are described in the following sections, and we refer the interested reader to [61] for more methods
and details regarding these methods. For a visualization of the basins of convergence for Newton’s and Broyden’s
methods, we refer the interested reader to article [106].

3.1.1 Generalized Minimum Residual method (GMRES)

Consider a system of linear equations of the form Ax = b. The GMRES method [107] is an iterative method
which at the k−th iteration uses the Arnoldi iteration [108] to find an approximate solution xk in the k−th Krylov
subspace Kk which minimizes the residual ‖b−Axk‖2. The k-th Krylov subspace of the GMRES method is

Kk = Kk(A, r0) = span{r0, Ar0, A2r0, . . . , Ak−1r0},

where r0 = b−Ax0 is the residual at the initial point x0.
GMRES assumes that the matrix A is invertible (and hence square) and that b is normalized such that ‖b‖2 = 1.

It is worth mentioning that because A is assumed to be invertible, that this technique in its original form can not be
utilized with Newton’s method to find an approximate solution to a SNE that has more equations than unknowns
(m > n).

3.1.2 Successive Overrelaxation method (SOR)

The SOR method is another iterative method for solving a system of linear equations of the form Ax = b. If we
assume that the diagonal elements aii of A are all non-zero, at the k−th iteration we can utilize the SOR iteration
to find a new approximate solution xk+1 to Ax = b by the following update:

xk+1 = xk − ω(D − ωL)−1(Axk − b),

where ω > 1 is a relaxation parameter, and A = D−L−U where D,L, and U are diagonal, strictly lower triangular,
and strictly upper triangular matrices respectively. Here, L and U have zero diagonal elements, and the assumption
that the diagonal elements of A are nonzero ensures that (D − L)−1 exists [61]. The Gauss-Seidel iteration is a
special case of the SOR where ω = 1.

Though the SOR method and the corresponding Jacobi method [61] can be utilized to solve the series of linear
systems produced by Newton’s method, the SOR and Jacobi methods can also be extended to find a single solution
to a SNE.

3.2 Solving a SNE using generalizations of iterative methods for linear systems

The well known and widely used Gauss-Seidel iterative method for solving a linear system of equations of the form
Ax = b can be generalized for solving SNEs. Thus, if Fn = (f1, f2, . . . , fn) : D ⊂ Rn → Rn, then the basic step of the
nonlinear Gauss-Seidel (NGS) iteration is to solve (in analogy to linear case), the i−th nonlinear one-dimensional
equation:

fi(x
k+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
n) = 0, k = 0, 1, . . . , i = 1, 2, . . . , n. (9)

for xi, and to set xk+1
i = xi. To obtain xk+1 from xk, we solve successively the n one-dimensional nonlinear

equations (9) for i = 1, 2, . . . , n. If relaxation parameters ωk are used, we may set xk+1
i = xki + ωk(xi − xki ) and

the corresponding method is called Nonlinear Successive Overrelaxation (NSOR) method. In an analogous way,
the k−th step of the Nonlinear Jacobi (NJ) iterative scheme consists of solving the i−th nonlinear one-dimensional
equation:

fi(x
k
1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
n) = 0, k = 0, 1, . . . , i = 1, 2, . . . , n. (10)

for xi and setting xk+1
i = xi, for i = 1, 2, . . . , n. The main characteristic of the nonlinear Jacobi approach is that it

can be easily parallelized.
In contrast to the linear case, in general, the analytic solutions of Eqs. (9) and (10) are not available and an

one-dimensional rootfinding method must be applied that terminates after a suitable number of steps. Any type
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of one-dimensional methods can be used leading to a large variety of combined methods. On the other hand if
many steps of these one-dimensional methods are applied the whole procedure becomes cumbersome and thus in
practice, in many cases, a few steps or at least one step of these methods is applied. In this case, for example, if we
apply the one-dimensional Newton’s method, the derivative-free one-dimensional secant method or the derivative-
free one-dimensional Steffensen method to Eqs. (9) and (10), we obtain respectively the following methods for
solving SNEs [61]:

(a) the one-step SOR-Newton method:

xk+1
i = xki − ωk

fi(x
k,i)

∂ifi(xk,i)
, k = 0, 1, . . . , i = 1, 2, . . . , n.

where xk,i = (xk+1
1 , xk+1

2 , . . . , xk+1
i−1 , x

k
i , x

k
i+1, . . . , x

k
n)> and where ∂ifi(x) denotes the partial derivative of the func-

tion fi(x) with respect to the variable xi.

(b) the one-step Jacobi Newton method:

xk+1
i = xki − ωk

fi(x
k)

∂ifi(xk)
, k = 0, 1, . . . , i = 1, 2, . . . , n.

(c) the derivative-free one-step SOR secant method:

xk+1
i = xki − ωk

xki − x
k−1
i

fi(xk,i)− fi
(
xk,i + (xk−1i − xki )ei

)fi(xk,i), k = 0, 1, . . . , i = 1, 2, . . . , n,

where ei indicates the i-th column of the identity matrix In.

(d) the derivative-free one-step Jacobi secant method:

xk+1
i = xki − ωk

xki − x
k−1
i

fi(xk)− fi
(
xk + (xk−1i − xki )ei

)fi(xk), k = 0, 1, . . . , i = 1, 2, . . . , n.

(e) the derivative-free one-step SOR Steffensen method:

xk+1
i = xki − ωk

fi
(
xk,i

)2
fi(xk,i)− fi

(
xk,i − fi(xk,i)ei

) , k = 0, 1, . . . , i = 1, 2, . . . , n.

(f) the derivative-free one-step Jacobi Steffensen method:

xk+1
i = xki − ωk

fi
(
xk
)2

fi(xk)− fi
(
xk − fi(xk)ei

) , k = 0, 1, . . . , i = 1, 2, . . . , n. (11)

Furthermore, since in many problems of practical interest the functions values are known only imprecisely, the
traditional and widely applied one-dimensional bisection method can be used for a suitable number of steps for
computing solutions of Eqs. (9) and (10). Specifically, for the computation of a zero of a continuous function
f : [a, b] ⊂ R → R the one-dimensional bisection method has be given in [80] by the following sequence:

xk+1 = xk + sgnf(x0) sgnf(xk) (b− a)/2k+1, x0 = a, k = 0, 1, . . . . (12)

Similarly, instead of the above sequence we can also use the following one:

xk+1 = xk − sgnf(x0) sgnf(xk) (b− a)/2k+1, x0 = b, k = 0, 1, . . . . (13)

Obviously, the sequences (12) and (13) converge to a root r ∈ (a, b) if for some xk, k = 1, 2, . . . it holds that
sgnf(x0) sgnf(xk) = −1. Also, the number of iterations ν, that are required in obtaining an approximate root r∗

such that |r − r∗| 6 ε for some ε ∈ (0, 1) is given by:

ν =
⌈
log2

(
(b− a) ε−1

)⌉
. (14)
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The one-dimensional bisection method always converges within the given interval (a, b) and is a globally convergent
method. Furthermore, it has a great advantage since it is worst-case optimal; i.e., it possesses asymptotically the
best possible rate of convergence in the worst case [109, 68]. Thus, it is guaranteed to converge to an approximate
root with a predetermined accuracy using the predefined number of iterations given by Eq. (14). Notice that no
other method has this characteristic. This method actually requires only the signs of function values (and the
gradient values for the optimization case) to be correct. Thus, it requires only one bit of information, namely the
sign of a function value and consequently it can be applied to problems with imprecise function values. Also, this
method can be generalized to tackle SNEs and optimization problems. In [80] a straightforward generalization of
the bisection method, named characteristic bisection method has been presented. For a few details of the bisection
and the generalized bisection methods and for some applications we refer the interested reader to [110, 111, 71, 74,
112, 79, 113, 80, 114, 82, 115, 116].

The main characteristic of all the above briefly described methods in this section is that they can tackle n-
dimensional SNEs using only one-dimensional rootfinding methods. This issue is very important in cases where
the dimension n is large. Also, the corresponding algorithms are very simple to implement with a few lines of
code. Notice that, the convergence properties of all the above methods are well studied and analyzed (see for
example [61]). On the other hand, although the nonlinear iterative rootfinding methods have been extensively
studied, the optimization case has not been thoroughly studied and analyzed. Details and some applications of the
above described methods can be found for example in [117, 118, 119, 114, 120].

3.3 Chebyshev-Halley methods

Although Newton’s method only has a quadratic rate of convergence, Halley’s method possesses a cubic rate of
convergence. Halley’s method, also known as the method of tangent hyperbolas, utilizes information from the tensor
of second derivatives of Fn(x) to accelerate convergence towards a local minimizer x∗ of Fn(x) from an initial guess
x0. Halley’s method attempts to calculate a new approximate solution xk+1 to a SNE from xk using the following
scheme:

xk+1 = xk −
{
I +

1

2
LFn

(xk)
[
I − αLFn

(xk)
]−1}

F ′n(xk)−1Fn(xk),

where α is a real parameter, and LFn(x) = F ′n(x)−1F ′′n (x)F ′n(x)−1Fn(x) is the degree of logarithmic convexity
[121, 122, 123]. Therefore, Halley’s method is applicable to cases where F ′′n (x) can be computed.

Chebyshev’s method refers to the case where α = 0, the classical Halley’s method refers to the case where α = 1
2 ,

and the super-Halley method refers to the case where α = 1. Details about Chebyshev-like methods for solving SNEs
can be found in [124].

3.4 Tensor methods utilizing higher order derivatives

There exists a class of tensor methods which utilizes information from higher order derivatives to accelerate con-
vergence to a single solution of a SNE. In [125], Steihaug and Suleiman utilize the model:

‖Mk(d)‖2 =
∥∥∥Fn(xk) + JFn

(xk)d+
1

2
T kdd

∥∥∥
2
6 ηk‖Fn(xk)‖2. (15)

which seeks to determine a step dk at each iteration. In this model, T k = F ′′n (xk) is the tensor of second derivatives
of Fn(xk), and ηk ∈ [0, 1). Steihaug and Suleiman proved that any method that can be used to find dk in Eq. (15)
while satisfying ‖dk‖2 = O(‖Fn(xk)‖2) is locally convergent. Furthermore, Steihaug and Suleiman showed that the
rate of convergence is at least:

(a) Q-super-linear when ηk → 0.

(b) Q-quadratic when ηk = O(‖Fn(xk)‖2).

(c) Q-cubic when ηk = O(‖Fn(xk)‖22).

(d) Q-order min
{
p̂, 3

}
when ηk = O(‖Fn(xk)‖p̂−12 ), 1 < p̂.

Furthermore, in order to solve Eq. (15), Steihaug and Suleiman in [125] introduce a class of inexact Chebyshev-Halley
methods which under some assumptions are locally convergent satisfying Eq. (15) and ‖dk‖2 = O(‖Fn(xk)‖2).
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3.5 Tensor-free Chebyshev-Halley method

Instead of calculating the tensor term T kdd as performed in Eq. (15), Eustaquio et al. in [85] avoid calculating the
tensor term altogether by introducing a general tensor-free Chebyshev-Halley method for solving SNEs. Therefore,
though Eq. (15) requires calculating F ′′n (x), the method of Eustaquio et al. can be utilized in cases where F ′′n (x)
does not exist. Also, this method does not require the inequality in Eq. (15) to be satisfied. The general framework
for the inexact tensor-free Chebyshev-Halley class is the following:

1. Given the SNE Fn(x) = Θn, the machine precision εM , and k = 0, select α ∈ R, a step length h > 0, an
initial point x0 ∈ Rn, a forcing term limit η̃ ∈ (0, 1), and a mapping C : Rn → Rn×n.

2. while Fn(xk) 6= Θn do

(a) Select forcing term tolerances ηk1 ∈ [0, η̃) and ηk2 ∈ [0, η̃).

(b) Compute d1 such that
∥∥JFn

(xk)d1 + Fn(xk)
∥∥
2
6 ηk1

∥∥Fn(xk)
∥∥
2
.

(c) Compute d2 such that
∥∥(JFn

(xk) + αC(xk)
)
d2 + 1

2C(xk)d1
∥∥
2
6 ηk2

∥∥ 1
2C(xk)d1

∥∥
2
.

(d) Set xk+1 = xk + d1 + d2.

(e) Set k = k + 1.

3. end while

where the authors utilized the mapping C(xk) = 1
h

(
JFn

(xk+hd1)−JFn
(xk)

)
with step length h =

√
εM ‖xk‖2

/
‖d1‖2 ∈

(εM , 0.5) and the forcing terms ηk1 = min
{

10−8, ‖Fn(xk)‖22
}
∈ (2εM , 10−8] and ηk2 = min

{
10−8, ‖Fn(xk)‖2

}
∈

(2εM , 10−8] to control the level of accuracy of the approximate solution to the SNE. In comparison to Eq. (15),
the mapping C(xk) replaces the tensor term T kd while still preserving a third-order rate of convergence. As shown
in the algorithm above, each iteration only requires approximately solving two linear systems. Eustaquio et al.
utilized Saad and Schultz’s Generalized Minimum Residual method (GMRES) [107] to solve the two linear systems
and obtain the inexact Newton steps dk1 and dk2 .

The authors proved that any method belonging to their class of inexact tensor-free Chebyshev-Halley methods is
locally convergent. Note that the system solved in step 2(b) is analogous to system (8) solved in Newton’s method
where d1 = xk+1 − xk.

Eustaquio et al. conducted a rigorous quantitative comparative analysis of their method against the Inexact
Newton method and the tensor methods utilizing higher order derivatives presented by Steihaug and Suleiman
[125]. Eustaquio et al. illustrated that the class of tensor-free Chebyshev-Halley methods are capable of efficiently
handling problems that have ill-conditioned or singular Jacobian matrices at the solution.

Furthermore, Jarrat’s method [126] is defined as a specific case of the tensor-free Chebyshev-Halley method
where α = 1, ηk1 = 0, ηk2 = 0, h = 2/3, and the mapping C(xk) = h−1

(
JFn

(xk + h d1)− JFn
(xk)

)
. Jarrat’s method

has a convergence rate of four. Articles using Jarratt-like methods to solve SNEs can be found for example in
[30, 127, 128].

3.6 Tensor methods not utilizing higher order derivatives

In addition to the class of tensor methods which utilize a tensor of higher order derivatives, other tensor methods
exist and have demonstrated effectiveness at solving large, sparse, and ill-formed SNEs with singular Jacobian
matrices [129, 130, 131, 132, 133, 134, 135, 136, 137]. In [129] Frank and Schnabel introduced tensor strategies for
solving SNEs based around solving the quadratic model:

min
d∈Rn

‖Mk(d)‖2 = min
d∈Rn

∥∥∥Fn(xk) + JFn
(xk)d+

1

2
T kdd

∥∥∥
2
, (16)

where JFn(x) is the Jacobian matrix of Fn(x), d is the step size, and T k ∈ Rn×n×n is a carefully chosen tensor.
Expanding upon this formulation, in [137], Bader presents three Krylov-based methods for iteratively solving

Eq, (16) to a specified tolerance. Bader’s method selects T k such that the model interpolates p 6
√
n function

values from its most recent history of iterates. By selecting p = 1, Bader reduces the tensor model about xk to

min
d∈Km

‖Mk(d)‖2 = min
d∈Km

∥∥∥Fn(xk) + JFn
(xk)d+

1

2
ak
(
(sk)>d

)2∥∥∥
2
, (17)
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where Km is a m-dimensional Krylov subspace, and where ak, sk ∈ Rn are given as follows:

ak =
2
(
Fn(xk−1)− Fn(xk)− JFn

(xk)sk)

((sk)>sk
)2 ,

sk = xk−1 − xk.

The linear Krylov subspace method finds an approximate solution xm to the linear system Ax = b from an m-
dimensional affine subspace x0 +Km where

Km(A, r0) = span{r0, Ar0, A2r0, . . . , Am−1r0},

r0 = b−Ax0,

and r0 is the residual at the initial point x0.
The three techniques presented by Bader in [137] select Km in different ways as a subroutine within the following

algorithm:

1. Given the SNE Fn(x), select an initial point x0 and a maximum number of iterations kmax.

2. For k = 0, 1, 2, . . . , kmax, do:

(a) Select a forcing term tolerance ηk ∈ [0, 1).

(b) If k = 0:

i. Calculate the Newton-GMRES [107] step dN based on the tolerance ηk.

ii. Proceed to step 2e.

(c) Form the local tensor model (16).

(d) Calculate the approximate tensor step dT according to ηk by solving one of the three methods presented
for selecting Km.

(e) Set xk+1 = xk + αd where a linesearch strategy using the directions dT and / or dN is used to select d
and α.

(f) If xk+1 is an acceptable approximate root of Fn(x):

i. Stop.

Bader’s methods demonstrated effectiveness at solving large-scale SNEs, especially those which have ill-conditioned
or singular Jacobians at the solution.

3.7 Quasi-Newton method for finding roots

Although Newton’s method for finding roots requires the Jacobian JFn(x), if JFn(x) is not available, Quasi-Newton
methods can be utilized. A Quasi-Newton method is any method that utilizes an approximation of JFn

(x) instead of
the exact JFn

(x). A classification of Quasi-Newton methods for solving SNEs is presented in article [138]. Examples
of Quasi-Newton methods include the methods discussed in articles [139, 140].

One of the most popular Quasi-Newton methods is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
[141, 142, 143, 144]. Popular extension of BFGS method is limited memory BFGS (L-BFGS) [145]. Article [58]
combines a memoryless variant of the BFGS method with a projection technique for solving SNEs, and the authors
demonstrated the efficiency of the method by solving large SNEs with up to 5000 dimensions in the order of
milliseconds or seconds, depending on the problem instance. Other Quasi-Newton methods include the Symmetric
Rank 1 (SR1) method and the Davidon–Fletcher–Powell (DFP) method among others. Quasi-Newton methods
were utilized to find solutions to SNEs in articles [146, 147, 148, 149, 150, 151, 152, 153, 154].

3.8 Spectral methods

Spectral methods are another class of derivative-free methods which have been used to solve SNEs, and they are
particularly well suited for solving large SNEs because they have a relatively low storage requirement [59]. Spectral
methods often utilize spectral parameters and coefficients to help determine the search direction dk in the update
step xk+1 = xk + αkdk. For example, article [59] presents two derivative-free hybrid spectral methods for solving
SNEs, and proves that the proposed methods will converge to a solution when applied to SNEs that satisfy the
conditions of monotonicity (Eq. (4)) and Lipschitz continuity (Eq. (5)). Other articles which propose applying
spectral methods for solving SNEs include [155, 156].
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3.9 Hermitian and skew-Hermitian splitting (HSS) based methods

First introduced in [157] for solving linear systems of equations, Hermitian and skew-Hermitian splitting (HSS)
based methods have been shown to be effective at solving sparse SNEs [158] and SNEs which can be decomposed
into a linear part Ax and a nonlinear part ζ(x) such that Fm(x) = Ax − ζ(x) [159]. When the linear part Ax is
dominant over the nonlinear part ζ(x), Fm(x) can be referred to as a weakly nonlinear system. By separating the
linear and nonlinear elements of Fm(x), certain specialized techniques can potentially be utilized to find solutions to
Fm(x) more quickly than by utilizing traditional root finding methods. Some of these techniques are derivative-free,
including the derivative-free HSS based method introduced in [160] which is guaranteed to converge to a solution
on SNEs that satisfy certain conditions.

3.10 Levenberg-Marquardt method

The Levenberg-Marquardt algorithm [161, 162] was designed to solve a nonlinear least squares problem that can
be in general expressed as ϕ(x) = 1

2

∑m
i=1[fi(x)]2 where ϕ : Rn → R. The Levenberg-Marquardt algorithm is an

iterative procedure which at each iteration calculates an updated solution using the rule xk+1 = xk +λd, where the
search direction d is found by solving equations of the form(

J>Fm
JFm

+ µ In
)
d = −J>Fm

Fm,

where JFm
∈ Rm×n is the Jacobian matrix of Fm, µ ∈ R, In is the identity matrix, and Fm : Rn → Rm. In article

[163], Fletcher proposed the following modification to make the solution scale invariant:(
J>Fm

JFm
+ µdiag{J>Fm

JFm
}
)
d = −J>Fm

Fm,

where the identity matrix In is replaced with the diagonal matrix consisting of the diagonal elements of J>Fm
JFm .

Article [164] proposed to use the Levenberg-Marquardt method for solving a SNE modeling a port mooring structure.
The Levenberg-Marquardt algorithm is widely used in many applications, including artificial neural network training
(for example, see article [165]).

3.11 Deflation techniques for the computation of further solutions

As illustrated above, there is a plethora of methods for obtaining a single solution of a system of n nonlinear real
equations in n real unknowns. Brown and Gearhart in [166] proposed deflation techniques for the computation
of further solutions of a system of nonlinear equations. Specifically, these techniques proceed as follows: “Once a
solution of a system of nonlinear equations has been obtained a modified system is formed in such a way that it
retains those solutions of the original system which remain to be computed except the solutions that has been already
computed”. This procedure may be applied sequentially until all solutions of the original system are obtained.

For example, assume a system of nonlinear equations Fn(x) = Θn, where Fn = (f1, f2, . . . , fn) : Dn ⊂ Rn → Rn,
then to deflate out the p already computed roots r1, r2, . . . , rp in order to compute additional roots, the following
norm deflated function [166] is applied:

f̂i(x) =
1∏p

j=1 ‖x− rj‖
fi(x), i = 1, 2, . . . , n,

or alternatively the following inner product deflated function [166] can be used:

f̃i(x) =
1∏p

j=1

〈
∇fi(rj), (x− rj)

〉 fi(x), i = 1, 2, . . . , n.

The above inner product deflated function has proven to be useful in practice when Newton’s method for root
finding is used. The deflation techniques can also be extended for the computation of multiple solutions. A study
of the deflation techniques for the one dimensional case can be found in article [167]. Also, additional techniques
for the optimization case related to the above deflation techniques as well as some applications can be found for
example in the papers [168, 169, 170, 171, 172, 173].
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4 Symbolic computation methods

Exact algorithmic methods for solving systems of nonlinear polynomial equations have been developed in the
realm of Symbolic Computation, also called Computational Algebra, or Computer Algebra. Broadly speaking, this
particular subarea of Symbolic Computation can in fact be interpreted as a constructive version of some parts of
the well-established mathematical theories of Commutative Algebra and Algebraic Geometry. We begin this section
by a brief presentation (via examples) of the main Symbolic Computation methods for solving systems of nonlinear
polynomial equations, namely resultants and Gröbner bases. We end this section by citing a number of books that
discuss extensively all the developments in the area of Symbolic Computation exact methods for solving systems of
nonlinear polynomial equations.

4.0.1 Resultants

Historically, the theory of resultants was developed with the aim to provide a systematic means of elimination of
variables/unknowns from a system of nonlinear polynomial equations.

The resultant of two univariate polynomials of degrees m, n respectively,

p(x) = pmx
m + · · ·+ p1 + p0, q(x) = qnx

n + · · ·+ q1 + q0,

is defined as the determinant of the (n+m)× (n+m) Sylvester matrix associated to p(x) and q(x), namely:

resx
(
p(x), q(x)

)
= det



am am−1
0 am am−1
0 0 am am−1
0 0 0 am
bn bn−1
0 bn bn−1
0 0 bn bn−1
0 0 0 bn


.

One of the main properties of the resultant is that it is equal to zero, if and only if the two polynomials have a
common root.

The resultant of two bivariate polynomials p = p(x, y), q = q(x, y) with respect to the variable x, or with respect
to the variable y, is the determinant of their associated Sylvester matrix, when p and q are considered as polynomials
in x, or in y respectively.

Let us illustrate the concept of the resultant by a simple but instructive example.

Example 1 Consider the system of two polynomials f1(x1, x2) = 0, f2(x1, x1) = 0 in two variables x1, x2, given
by:

f1(x1, x2) = x21 + x22 − 1,

f2(x1, x2) = x1 − x2 − 1.
(18)

The resultant of f1, f2, with respect to x1 is the determinant of their 3 × 3 Sylvester matrix when considered as
polynomials in x1, namely, f1 = 1 · x21 + 0 · x1 + (x22 − 1), f2 = 1 · x1 + (−x2 − 1),

resx1(f1, f2) = det


1 0 x2

2 − 1

1 −x2 − 1 0

0 1 −x2 − 1

 = 2x22 + 2x2.

By factorizing the resultant and setting it equal to zero, we obtain x2 = 0 and x2 = −1. By substituting each of
these two values of x2 back into (18), we obtain the corresponding values of x1 as: x1 = 1 and x1 = 0. Therefore,
we conclude that the system (18) possesses the two solutions:

(x1 = 1, x2 = 0), (x1 = 0, x2 = −1),

which can easily be verified to be correct. In terms of geometric interpretation, the first equation f1(x1, x2) represent
the unit circle and the second equation f1(x1, x2) represents a straight line, that intersects the unit circle. The two
solutions of the system (18) are the two points of intersection of the (red) unit circle and this (green) straight line
in Figure 2 below.
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Figure 2: Geometric interpretation of System (18)

4.0.2 Gröbner bases

The theory of Gröbner bases was developed as a multivariate analogue of the classical Gaussian elimination for
systems of linear equations. Again we illustrate the concept with an example and refer to the aforementioned books
for additional details and technicalities.

Example 2 Consider the system of three polynomials f1(x1, x2, x3) = 0, f2(x1, x2, x3) = 0, f3(x1, x2, x3) = 0 in
three variables x1, x2, x3, given by:

f1(x1, x2, x3) = x21 + x2x3 − 2,

f2(x1, x2, x3) = x1x3 + x22 − 3,

f3(x1, x2, x3) = x1x2 + x23 − 5.

(19)

The lexicographical Gröbner basis of the ideal generated by these three polynomials, with respect to the lexico-
graphical ordering induced by x2 > x1 > x3 is given by the three polynomials:

8x82 − 60x62 + 142x42 − 172x22 + 1,

88x72 − 680x52 + 1674x32 − 2081x2 + 117x1,

152x72 − 1132x52 + 2700x32 − 3403x2 + 117x3.

(20)

Now we notice that the first polynomial in (20) depends only on x2 and is of degree 8. In addition, the second
polynomial in (20) depends linearly on x1 and the third polynomial in (20) depends linearly on x3. This allows us
to express x1 and x3 as polynomials in x2. Therefore, the solution process starts by finding the 8 roots of the first
polynomial in (20) and for each one of those roots, we find the unique values of x1 and x3, given by the last two
polynomials in (20). Here are the eight complex roots (four real roots and two pairs of complex conjugate roots) of
the first polynomial in (20)

−2.16624183202470499

2.16624183202470499

−0.07643337499454630

0.07643337499454630

−1.329681781358029− 0.606033421098925 i

−1.329681781358029 + 0.606033421098925 i

1.329681781358029− 0.606033421098925 i

1.329681781358029 + 0.606033421098925 i
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Note that the four real roots and the four complex roots come in pairs of the form (r,−r), a consequence of the
fact that the first polynomial in (20) contains only even powers of x2. The presence of only even powers of the
indeterminate x2 in the first polynomial in (20) is captured by the fact that the order of the Galois group of this
polynomial is smaller than the order of the Galois group of a more “random/generic” polynomial of degree 8.

A very readable, self-contained and pedagogical introduction to Gröbner bases can be found in chapter 10 of [174].

4.0.3 Symbolic computation software systems

One of the major outcomes of the research area of Symbolic Computation (Computer Algebra) in the past few
decades, is the advent of the so-called Computer Algebra Systems (CAS). A CAS is defined as a piece of mathe-
matical software that makes advanced functionalities available to the user, in a transparent manner. Such advanced
functionalities include univariate and multivariate polynomial factorization, primality testing, integer factorization,
root finding, numerical and exact integration, visualization, number theory, linear algebra, commutative algebra,
commutative and non-commutative settings, tools for optimization, graph theory, group theory, coding theory,
combinatorics, discrete mathematics and so forth. There is a number of commercial and free (open source) CAS
available today. Some of the most well-known early CAS (such as Axiom and Macsyma) are largely deprecated
today. We focus our attention on those CAS that currently feature a significant user base. We note that CAS
are used by millions of research mathematicians, physicists, chemists, astronomers, engineers, practitioners and
educators at academic, public, private and government institutions worldwide. In what follows, we provide a brief
summary of the main commercial CAS in use today.

(a) Maple is the flagship Canadian product in the area of mathematical software. It is produced, maintained and
distributed by the company Maplesoft, based in Waterloo, Ontario, Canada https://www.maplesoft.com/.
Maple features an easy-to-learn underlying programming language as well as more than 150 additional packages
that significantly expand its core functionalities.

(b) Magma is the flagship Australian product in the area of mathematical software. It is produced, maintained and
distributed by the University of Sydney http://magma.maths.usyd.edu.au/. It provides a mathematically
rigorous environment for defining and working with structures such as groups, rings, fields, modules, algebras,
schemes, curves, graphs, designs, codes and many others. Magma also supports a number of databases
designed to aid computational research in those areas of mathematics which are algebraic in nature.

(c) Mathematica is a flagship American product in the area of mathematical software. It is produced, maintained
and distributed by the company Wolfram Research, based in Champaign, Illinois, United States https:

//www.wolfram.com/. Mathematica’s stated purposes include injecting computational intelligence at every
level, on every project by unifying algorithms, data, notebooks, linguistics and deployment—enabling powerful
workflows across desktop, cloud, server and mobile.

(d) Matlab is a flagship American product in the area of mathematical software. https://www.mathworks.com.
It is produced, maintained and distributed by the company MathWorks, based in California, United States.
MATLAB’s strong points include matrix manipulations, plotting of functions and data, implementation of
algorithms, creation of user interfaces, and interfacing with programs written in other languages.

Some of the most popular non-commercial mathematical software packages include Sage, Singular/Plural, Co-
CoA, Macaulay 2 and so forth. Each one has their own strengths and areas of particular focuses. For more
information on CAS in general, we refer the interested reader to the comprehensive book [175].

4.0.4 Symbolic computation books

In this section, we present a selection of books in Symbolic computation and related areas. While there is inevitably
some overlap among these books, there are also different aspects of polynomial system solving and its applications
discussed in each one of them.

1. The classic books [174, 176, 177] are general references for Computer Algebra.

2. The series of books by Teo Mora [178, 179, 180, 181] is an encyclopedic reference to the subject of polynomial
system solving.
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3. The theory of Gröbner bases, see [182, 183, 184, 185], was initially developed by Bruno Buchberger and further
extended by several other researchers. The Buchberger algorithm to compute Gröbner bases of polynomial
systems is implemented in every major Symbolic Computation software today. This includes commercial
software, such as Maple, Magma and Mathematica and open source software, such as Singular [186], Plural
[187], CoCoA [188, 189, 190, 191] and the Macaulay2 software system [192].

4. The book [193] discusses aspects of systems of polynomial equations from the viewpoints of computational
commutative algebra, discrete geometry, elimination theory, real geometry, as well as their applications in
various domains such as partial differential equations, economics, probability, and statistics.

5. The book [194] and its second edition [195], describe useful algorithmic aspects of systems with symmetries,
treated using Invariant Theory. The book [196] is concerned with polynomial systems with symmetries, that
arise in the context of dynamical systems. The french-language book [197] is devoted exclusively to polynomial
system solving methods. The french-language book [198] contains a series of chapters on polynomial system
solving.

6. The books [199] and [200] describe the emerging area of Algebraic Statistics, while the book [201] focuses on
numerical aspects of polynomial system solving. On the other hand, the book [202] focuses on theoretical
aspects of polynomial system solving. Furthermore, the books trilogy [203, 204, 205] examine the foundation
of polynomial system solving from the algebraic geometry standpoint as well as the applications standpoint.
The Galois group of a polynomial is inextricably linked with the more general Galois Theory, we mention the
three books [206, 207, 208].

5 Homotopy / Continuation methods

Homotopy methods, also referred to as continuation methods, may be used for finding solutions to polynomial
equations and systems of polynomial equations [209, 210, 211]. Polynomial equations often arise in kinematics
and robotics related problems [14, 12]; papers [6, 7] apply homotopy methods to solve systems of power flow
equations; large-scale integrated circuit designs and protein-protein interaction equation are solved using homotopy
method in [8], [27] applies homotopy methods for solving SNEs arising in geodesy; [22] applies homotopy for
finding string vacua, [4] applies homotopy methods in chemical engineering. Homotopy (or deformation) of a
system of equations Fn(x) = Θn ≡ (0, 0, . . . , 0)> (cf. Eq. (1)) is a function Hn such that Hn(x, 1) = Gn(x), and
Hn(x, 0) = Fn(x), where the roots of Gn(x) are known. For example, it is possible to choose a convex homotopy,
Hn(x, λ) = λGn(x) + (1− λ)Fn(x), where λ ∈ [0, 1] and trace the curve, called the homotopy path, from a starting
point (x, 1) to solution point (x, 0). Thus, gradually deforming solutions of a starting system Gn(x) = Θn into
the solutions to the target system Fn(x) = Θn. At each step of the process, a solution of the current system
Hn(x, λ̃) = Θn is used as a starting solution to the next system Hn(x, λ̃+∆λ) = Θn, which is solved using Newton-
type methods that require an invertible Jacobian. In the case of polynomial systems it is trivial to find solutions
of the starting system Gn(x) = Θn. Common approaches for defining Gn(x) include fixed point homotopy, where
Gn(x) = x − x0 (where x0 is a starting solution) and Newton homotopy, where Gn(x) = Fn(x) − Fn(x0). The
latter is also referred to a global homotopy, where Hn(x, λ) = Fn(x)−λFn(x0), where x0 is a starting solution [209].
An adaptive method for selecting the steps of the homotopy path is presented in [212]. As per [213], advantages
of homotopy methods are 1) handling of singular solutions, 2) possibility to obtain multiple solutions using one
homotopy path, and 3) preserving Morse indices for gradient systems. Paper [12] introduces a collision-based
homotopy continuation technique. Article [214] discusses the problem of divergent homotopy paths and proposes
an algorithm which performs projective path tracking.

Article [215] describes the software package PHCpack for solving polynomial systems using the homotopy
method. Other software packages implementing homotopy continuation methods include Bertini [216] and Hom-
Lab [217]. Paper [218] describes a monodromy-based solver.

6 Interval methods

Interval arithmetic was introduced in article [219]. Books on interval methods include [220] and [221]. A real
interval X is defined as a set of real numbers between lower and upper bounds

X = [a, b] = {x ∈ R | a 6 x 6 b}.
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Interval arithmetic is a set of operations such as addition, subtraction, multiplication, and division, defined on
the intervals. Further, interval functions, domain and range of which are the intervals, have been defined. In
addition to that, interval differentiation and integration have also been proposed. The most important benefit of
interval analysis is its accountability for rounding errors due to limited machine precision. If a value is represented
as a single number, rounding errors occurring during the computations may accumulate, thus leading to a wrong
result. In interval arithmetic a value is represented by a lower and upper bound which provide reliable results
during the computations. Further, interval arithmetic can be used to model uncertainty, often arising in practical
problems; for example, uncertainty due to imprecise measurements [222]. Interval arithmetic was standardized by
the IEEE in 2015 [223]. Global optimization problems can be solved using the interval branch-and-bound method
which iteratively splits the search space, and removes its parts that do not contain a global solution; multiple
splitting schemes have been proposed in the literature [224]. In this case, application of interval arithmetic allows
to guarantee, if a solution exists within a region of interest. Paper [225] proposes to use interval methods for
inclusion and exclusion tests, where inclusion tests check existence of the solution within an interval, and exclusion
tests check its non-existence. The interval Newton method [226] is a generalization of a Newton method for interval
arithmetic; it can be used to find zeros of a function. Interval Newton method attempts to iteratively narrow down
the new interval solution [xk+1] from [xk] via

[xk+1] = [xk] ∩
(
[xk]− Jfn

(
[xk]

)−1
fn
(
[xk]

))
, k = 0, 1, 2, . . .

Paper [227] presents an interval branch-and-prune algorithm that is capable of finding all solutions of a polynomial
system, and the article evaluates the proposed method on large systems with up to 320 variables. An interval
method was also effectively applied to solve large polynomial systems with up to 2500 variables in [228]. Article
[229] provides a modification of the interval branch-and-bound method and applies it to solving systems of equations.
A method of solving nonlinear equations by using interval arithmetic was patented [230]. Article [231] presents
details of implementation of a parallel interval optimization algorithm and its application for solving systems of
nonlinear equations. A software package for solving equations using interval methods is presented in [232] and [233].
Article [234] provides interval extensions to Halley’s method (discussed in Section 3.3 of this paper), and applies it
to finding roots of a single nonlinear equation. Interval methods are utilized to find all solutions of the kinematics
SNEs in [235, 236]. Articles [237, 238] suggests to use linear programming (LP) for finding all solutions of the SNE;
the method in the paper is best suited to SNEs consisting of linear equations with relatively few nonlinear terms.
The method is based on the surrounding nonlinear equations by rectangles, based on interval arithmetic. Then, LP
can be used to remove parts of the solution space that do not contain the solutions. Paper [239] proposes to extend
this method and utilize LP narrowing, that is capable to solve large scale (n = 50 000) separable SNEs. Article
[240] proposes an extension of the interval method for a SNE based on its transformation to separable form. Paper
[241] describes the UniCalc SNE solver software which is based on interval methods. Another software package for
interval optimization, that can also be used to solve SNEs is RealPlayer [242].

7 Synopsis and concluding remarks

This article presents part one of a survey on methods for solving a system of nonlinear equations (SNE). In part one
we have presented a comprehensive survey of methods which can be utilized to search for solutions to a SNE without
transforming a SNE into an optimization problem. Since many of the SNEs that arise in real world applications
are considered over a finite bounded domain D, we first introduced a technique which can be utilized to determine
the number of solutions to a SNE that exist within D. Then, we introduced a diverse set of root-finding methods
which can be used to search for solutions to a SNE. Next, we described additional methods which have been used
to search for solutions to SNEs including methods from symbolic computation, homotopy / continuation methods,
and interval methods.

Analyzing this literature has led us to conclude that although there are a variety of root-finding methods which
are guaranteed to converge to a solution when applied to SNEs that satisfy certain conditions (such as monotonicity
(Eq. 4) and Lipschitz continuity (Eq. 5)), for general SNEs, there is no guarantee that any of the methods described
in this paper will converge to a solution in finite time. However, a new taxonomy of SNEs is needed to facilitate
the identification of new classes of tractable problems, and to compare the performance of the methods that are
most capable of solving them. We are actively working on the development of such a taxonomy. Additionally, we
are actively exploring methods capable of solving systems of nonlinear equations and inequalities.

In part one of this survey, we discussed methods for solving SNEs without transforming them into optimization
problems. In part two of this survey, we will describe various transformations which can be utilized to transform a
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SNE into an optimization problem, and we will discuss optimization algorithms which can then be used to search
for solutions. In part three of this survey, we will present a robust quantitative comparative analysis of methods
capable of searching for solutions to SNEs.
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[153] José Mario Mart́ınez. Practical quasi-newton methods for solving nonlinear systems. Journal of Computational
and Applied Mathematics, 124(1):97–121, 2000. Numerical Analysis 2000. Vol. IV: Optimization and Nonlinear
Equations.
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