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Abstract—As a complex disease with mechanisms that are
not fully understood, breast cancer pathology and progression
is expected to be determined not only by individual genes,
but also by their coordinated effects though a more systemic
framework. In this contribution, we combine gene differential
analysis (single gene view) with gene co-expression analysis
(systemic view) to provide insights on the implicated molecular
mechanisms across breast cancer progression. Important gene-
gene links in a gene co-expression network are identified and
clustered with Density and Distance Content driven (DeDiCo)
algorithm, which has been recently published by members of
our groups. This algorithm presents very good performance
regarding its accuracy on both synthetic and real-life datasets
and ability to determine arbitrarily shaped clusters without any
assumptions on the shape and the number of the clusters. This
work provides a pipeline, exploiting a novel clustering algorithm,
in order to analyse gene-gene links based on their co-expression
relationships and gene differential analysis across breast cancer
progression stages. Existing bibliography verifies the validity of
the resulted clusters while exclusive pathways per breast cancer
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stage as well as a common pathway signature across all breast
cancer stages are reported and proper discussion takes place.

Index Terms—Gene-gene links clustering, hybrid space of
co-expression and differential expression, density and distance
content driven clustering algorithm, pathway analysis per breast
cancer stage, gene co-expression networks

I. INTRODUCTION

Breast cancer is the most frequent malignancy in women
and one of the most common forms of cancer worldwide.
Unfortunately, it is also a complex disease whose mechanisms
are not yet fully understood [1]. In this work we aim to further
analyze genes related to each breast cancer stage, by per-
forming clustering on their gene-gene links characterized by a
synthetic descriptor that combines both differential expression
and co-expression. This has allowed for cluster detection
of similarly related genes as opposed to solely relying on
the proximity of two genes based on a single measure and
diversifies from other approaches which cluster genes together
based on their distance on a (weighted) graph.

The application of clustering algorithms in order to detect
clusters of genes has already received a lot of attention [2].
A common choice for this problem is the usage of the hierar-
chical clustering algorithms [3]–[5]. Various other clustering
algorithms have also been utilized [6], [7] or proposed their
own clustering schemes [8]. The concept of identifying gene-
gene relationships has also received significant attention as by
Wu et al. [9].

In the current study, we applied a recently proposed Density
and Distance Content driven (DeDiCo) clustering algorithm
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called DeDiCo [10], in a space defined by gene differential
expression and co-expression relationships in order to cluster
gene-to-gene links for each breast cancer stage. The choice
of DeDiCo is justified since it makes no assumption in
the number of clusters. Hence it addresses the problem of
clustering gene-gene links without the restriction of providing
the cluster number at hand or following a specific distribution,
e.g. Gaussian. Our goal is to highlight inter-related genes
and subsequently identify the corresponding molecular mech-
anisms per breast cancer stage.

II. METHODS

A. From genes to networks and beyond

Microarray gene expression data (mRNA) for Breast In-
vasive Carcinoma were obtained from The Cancer Genome
Atlas through Firehose (http://gdac.broadinstitute.org/). The
total number of samples was 587 from which 526 are primary
solid tumor and 61 normal samples. A subset of tumor samples
which contain clinical information for the breast cancer staging
(Stages I, II, III and IV) was selected. Each subset was
statistically analyzed with the R package LIMMA (Linear
Models for Microarray and RNA-Seq Data) [11] in order to
find the differentially expressed genes (DEGs) in breast cancer
samples for each stage compared with the corresponding
normal ones. To start with a manageable gene set for each
Stage, we filtered for the most statistically significant DEGs
(with p-value<0.01 and q-value<0.01) and then we kept the
top 1000 of them sorted in descending order based on their
absolute log Fold Change.

Based on our previous work [12], we applied the
correlation-based network inference method, GeneNet which
achieved the best score in the analysis of breast cancer stages.
A gene co-expression network for each breast cancer stage
was constructed for the selected DEGs. For the construction
of the co-expression networks we used the R package ENA
(Ensemble Network Aggregation) and more specifically, the
GeneNet function [13], [14]. Since co-expression networks
are fully connected but usually with a great number of edges
with extremely low weights, we kept a manageable number
of the edges with the highest weight, namely the top 30000
gene-gene links that correspond to the top 6% of the network
edges. For each link two features have been calculated: its
corresponding weight and the maximum absolute log Fold
Change of the two linked genes. All the feature measurements
have been normalized to the unit interval.

B. The Density and Distance Content driven (DeDiCo) clus-
tering algorithm

The notion of density is used in clustering as an expression
of larger point groupings in datasets. On the other hand, points
may be grouped together based on their distance, interpreting
their similarity as their proximity. The DeDiCo clustering
algorithm was recently proposed with the aim of combining
those notions [10]. It identifies regions containing the majority
of points by applying the notion of density and exploits the
distance on those subsets of the dataset in order to refine

the clustering. Those high density regions are called windows
and are basically a hyper-rectangle [15] which is moved
and enlarged in order to capture the majority of an existing
cluster. The Affinity Propagation algorithm [16] is used so
that potential cluster overlaps will not lead to merging adjacent
clusters and allow the algorithm to capture clusters of arbitrary
shape. Additionally, it has the ability to choose whether to
use or not an evolutionary optimization algorithm. For this
utilization of DeDiCo, Differential Evolution (DE) was used
in an attempt to reduce the computational cost. That is, at
each of its iterations, DeDiCo decides whether to use DE or
simply evaluates the density around each point of the dataset
at hand. Its choice is based on achieving the lowest number of
density evaluations. The resulting clusters are merged together
based on their distance. In the benchmarking presented in [10],
DeDiCo was consistently in the top-two clustering algorithms
when tested against six real-life datasets, in parallel with
Affinity Propagation, k-Means, DBSCAN and FSDP (fast
search and find of density peaks) clustering algorithms. Also
it has presented the ability to determine arbitrarily shaped
clusters without any assumptions on the shape and number of
the clusters. Nevertheless, DeDiCo has a significant number
of parameters, which allows it to adapt to a large range of
clustering problems. For this reason, we have exploited the
advantage of the High-Performance Computer Center ARIS
of the Greek Research and Technology Network. For the
purposes of this work, approximately 80K core hours where
used. This involved initial experimentation as well as the
parameters combination exploration. The clustering with the
highest Silhouette [17] value has been selected for further
analysis.

III. RESULTS

The DeDiCo algorithm has been applied to the filtered co-
expression network of each breast cancer (BC) stage. In order
to find the underlying significant biological pathways derived
from gene-gene links of each cluster for all breast cancer
stages, KEGG pathway enrichment analysis was performed
using the PathwayConnector (http://bioinformatics.cing.ac.cy/
PathwayConnector/index.php?app=PathwayConnector) [18] –
a web-tool that provides an easy way for rapidly relating hu-
man pathways together, by creating complementary networks
of pathways related to a specific biological status. We have
used the p-value< 0.05 in order to select the significantly
enriched pathways for each cluster and stage. We have in-
vestigated the common and exclusive mechanisms of each
stage and cluster and we have found four common cluster
and stage related pathways (Table I). From these pathways,
Complement and coagulation cascades has been reported to
be a key regulatory mechanism in cancer development and
growth [19] and cytochromes P450 (CYPs) are key enzymes
in cancer formation and cancer treatment [20].

We have also investigated the Stage and cluster exclusive
molecular mechanisms. As it is presented in Table I, there
are three cluster and stage exclusive molecular pathways for
Stage I. Examining the biological relevance of those pathways,



Helicobacter pylori was categorized as a carcinogen and it has
been correlated with the tumor grade of gastric cancer [21]. For
the case of Stage II, three common cluster and stage exclusive
pathways were found and six cluster exclusive pathways
(Table I). From these mechanisms, it has been reported that
choline metabolism is associated with oncogenesis and tumor
growth [22] and tight junction with the poor prognosis of
breast cancer [23].

Following pathway analysis of our findings for the case
of Stage III, six pathways have been found as cluster and
stage exclusive (Table I). From these pathways, Adrenergic
signaling in cardiomyocytes has been associated with breast
cancer progression [24] and fructose and mannose metabolism
has been found deregulated in breast cancer patients [25].

For the case of Stage IV, 18 stage exclusive pathways
were found, from which five (Mismatch repair, Pancreatic can-
cer, Cysteine and methionine metabolism, Oxytocin signaling
pathway and Leukocyte transendothelial migration) are also
exclusive between clusters. It has been reported that Mismatch
Repair Polymorphisms may be possible markers of breast
cancer [26] and with carcinogenesis, as it is involved in the
development and cancer progression [27]. From the remaining
13 molecular pathways that were found as exclusive for
Stage IV melanomas and lymphomas are the most commonly
reported tumors metastasizing to the breast [28] and AMPK
and Chemokine signaling pathways have been proposed as
possible targets for the prevention, development and metastasis
of breast cancer [29], [30].

DeDiCo clusters gene-gene links by taking into account
the fold change between two genes, as well as their co-
expression. Both differential expression and differential co-
expression analyses, are broadly considered to be useful tools
in understanding gene regulation related to complex diseases,
such as breast cancer. As it is presented in Fig. 1, each
cluster consists of gene-gene relationships with similar co-
expressions and differential expressions. More specifically,
Fig. 1 represents the gene-gene relationships of Stage I. The
remaining figures from the other Stages can be found in
our GitHub (https://github.com/CING-BIG/Gene-Gene-Links-
Clustering). Setting a threshold of 0.25 in both the normalized
co-expression and differential expression axes to find the top
gene-gene links from all clusters, we have resulted to 77 gene-
gene links and 91 unique genes for Stage I, 24 significant
gene-gene links and 43 unique genes for Stage II, 48 gene-
gene links and 68 genes for Stage III and 24 gene associations
as well as 39 unique genes for Stage IV respectively.

It is worth mentioning that the sub-networks from all stages
consist of significant genes for breast cancer such as KRT19,
HOTAIR, KRT5, SCGB2A2, CXCR4, MUCL1, MMP1, CEA-
CAM5, MMP9, TYMS, FOS, PTGS2, S100A7, SPP1, IL6 and
MMP13 that are strongly related to breast cancer based on the
Malacards database (http://www.malacards.org/card/).

IV. DISCUSSION

Clinical predictors are the most important features for breast
cancer prognosis but they are not enough for the accurate

TABLE I
THE LETTER C MARKS THE PATHWAYS THAT ARE CONSERVED ACROSS

ALL CLUSTERS IN EACH BC STAGE WHILE E MARKS THE PATHWAYS THAT
ARE EXCLUSIVE IN EACH BC STAGE

Pathway Name Stages
I II III IV

Metabolic pathways E
Epithelial cell signaling in Helicobacter py-
lori infection

E

Pentose and glucuronate interconversions E
Amoebiasis E/C
Choline metabolism in cancer E/C
Tight junction E/C
Fc gamma R-mediated phagocytosis E
Cocaine addiction E
Malaria E
Insulin resistance E
ABC transporters E
Glycolysis / Gluconeogenesis E
Legionellosis E
Salivary secretion E
Prion diseases E
Adrenergic signaling in cardiomyocytes E
Fructose and mannose metabolism E
Thyroid cancer E
Mismatch repair E
Pancreatic cancer E
Cysteine and methionine metabolism E
Oxytocin signaling pathway E
Leukocyte transendothelial migration E
Neuroactive ligand-receptor interaction E/C
Viral carcinogenesis E/C
Melanoma E/C
Systemic lupus erythematosus E/C
Glycerolipid metabolism E/C
Fatty acid degradation E/C
Cell cycle E/C
AMPK signaling pathway E/C
Serotonergic synapse E/C
Chemokine signaling pathway E/C
Nitrogen metabolism E/C
Regulation of lipolysis in adipocytes E/C
Retinol metabolism E/C
Tyrosine metabolism C C C C
Phenylalanine metabolism C C C C
Drug metabolism - cytochrome P450 C C C C
Complement and coagulation cascades C C C C
AGE-RAGE signaling pathway in diabetic
complications

C

prediction of the disease [31]. Furthermore, a single gene is de-
ficient as a biomarker for the prediction of patient survival. In
the current study, we have investigating the cluster formation
of gene-to-gene links for each breast cancer stage. We have
applied a recently proposed density and distance content driven
clustering algorithm in a space defined by gene differential
expression and co-expression relationships. The motivation
of clustering gene-to-gene links per breast cancer stage is
to highlight inter-related genes and subsequently identify the
corresponding molecular mechanisms per breast cancer stage.

Our results reveal four common cluster and stage related
pathways including Complement and coagulation cascades
among others. The functions of the complement system protect
the organism from pathogens. In the breast cancer staging,
these functions are regulated to change the environment in



Fig. 1. Stage I: Scatterplot regarding the gene-pair maximum differential expression value vs gene-pair co-expression value. A rectangular region in this
scatterplot with down-left corner at (Dif.Expr. Threshold, Coexpr.Threshold) = (0.25, 0.25) includes the best gene-gene links of simultaneous high co-expression
and dif. expression values. The small network pieces that correspond to these links are embedded in a picture-in-picture mode.

order to suit for cancer progression. Furthermore, proteins in-
volved in complement and metabolism pathways were altered
in several tumor stages [32], [33].

For the case of exclusive pathways, Helicobacter pylori
infection is one of the exclusive pathways that was found
for Stage I. In addition it has been associated with gastric
cancer but there is no evidences that it is associated with breast
cancer [34], [35]. Moreover, three pathways were found to be
common in all clusters of Stage II and six cluster and stage
exclusive. From these pathways, alterations in fructose and
mannose metabolism have also been found in human breast
cancer [25]. Moreover, evidences suggest Adrenergic signaling
in cardiomyocytes pathway may be related with breast cancer
development [24]. Finally, the increased expression levels
of prion proteins in breast cancer are associated with poor
prognosis [36], [37].

Following pathway analysis of our findings for the case of
Stage IV, 18 stage exclusive pathways were found, from which
five of them were also exclusive between clusters: Namely,
Mismatch repair, Pancreatic cancer, Cysteine and methionine
metabolism, Oxytocin signaling pathway as well as Leukocyte
transendothelial migration. Oxytocin signaling pathway has
been indicated as possible biomarker for breast cancer [27].
From the other 13 exclusive pathways for Stage IV, AMPK
signaling pathway is related with breast cancer growth and
metastasis [29].

In this study we have also examined the conserved sub-
networks for each breast cancer stage, to highlight the signif-
icant genes. PBK that was found exclusively in Stage II sub-
network, has significantly higher expression levels in patients
at Stages II and III compared to Stage I [38]. CXCL9 (Stages
I and II) has a central role in tumor progression and may
be a possible target for cancer therapy [39]. Moreover, the
expression levels of IL6 (found in Stages I and III) were

correlated with Stages II-III breast carcinoma [40]. Finally,
CXCR4 that was found exclusively in Stage IV, plays a pivotal
role in metastatic breast cancer [41].

A limitation in the investigation of gene-to-gene links and
their corresponding molecular pathways is the fact that there
is often no ground truth. For this reason it is difficult to
validate the highlighted molecular pathways apart from com-
paring results from the literature. Although our findings are
computational, they give insights for experimental validation.
The novelty of our approach lies in the exploitation of the
complex gene-to-gene relationships via a clustering algorithm
that allows researchers to obtain results that are more closely
tied to the biological mechanisms per breast cancer stage.

V. CONCLUSIONS

The analysis in this work with DeDiCo has been concluded
to significant breast cancer stages-related mechanisms, genes
and gene-gene links. Further investigation of the suggested
and unexplored so far mechanisms and gene-gene links that
have been proposed by DeDiCo clustering will provide a
more systematic understanding of the complex breast cancer
staging mechanism, which in turn yields useful insights in the
development of new therapeutic strategies.
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