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Abstract. The eigenvalue-gap of doubly stochastic matrices with spar-
sity constraints is maximized using the unified particle swarm optimizer.
This is possible through the use of an iterative normalization procedure
that maps the search space of the swarm to the set of doubly stochas-
tic matrices with given sparsity pattern. We extend the method to the
problem of finding doubly-stochastic matrices of given dimensions that
are as sparse as possible, and attain a given eigenvalue-gap target.
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1 Introduction

The study of complex networks is a fascinating subject with far reaching results
both in terms of their practical applications and in their theoretical foundations.
Understanding complex networks is crucial for the cooperation and control of
autonomous agents. It is fair to say that complex networks occur in various
aspects of life. Interestingly, one of the pioneers of the study of complex net-
works was a psychiatrist, and founder of group-therapy, Jacob Moreno (1889–
1974), with his paper “Statistics of social configurations” [18]. The study of social
networks still remains an active area of research [3]. In engineering the appli-
cations of complex networks are numerous. For example, after the introduction
of the multiprocessor, consensus networks were quickly applied for the task of
dynamic load balancing [4]. Modern data centers require more sophisticated solu-
tions to be scalable and reliable [14,25]. Among other applications, energy micro
grids is a recent area for distributed control and presents new challenges [11,13].
Additionally, sensor networks have several modern day applications [12], while
significant attention has been given to autonomous vehicle control [22]. Complex
networks also model many natural processes such as bird flocking [10]. In gen-
eral, one has to consider the dynamics of the network (how the network structure
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changes) and the dynamics in the network (how nodes interact). The major con-
cepts can be found, among others, in [1]. A lot of the theoretical interest is on
emergent phenomena such as the unidimensionality of beliefs [6].

A basic but integral part of distributed control is consensus. The purpose is
for all agents in the network to agree on an underlying state of their environment.
A special case is distributed averaging. In this instance, the nodes have to agree
on the average of their initial measurements by communicating through the
network [8]. We consider linear update rules. In each communication round,
each node updates its estimate by taking a weighted sum of the estimates of
its neighbors. To mention a few applications, the distributed Kalman filter can
be seen as a distributed averaging problem [19], while, distributed averaging is
heavily leveraged in modern distributed optimisation applications [7].

We are concerned with two key problems related to (a) the speed of conver-
gence to the average and (b) the problem of optimizing the network itself. In
other words, for problem (a) we want to minimize the number of communication
rounds required for all the nodes to approximate the average within an error
bound. It turns out that the asymptotic speed of convergence is bounded above
by the second largest eigenvalue in magnitude. The problem is to optimize the
network weights for speed, while respecting the network connectivity constraints.
For problem (b), given a target for the asymptotic speed of convergence, we aim
to find a network structure that is as sparse as possible. We tackle these problems
using the unified particle swarm optimization UPSO (see [21], the correspond-
ing MATLAB code and references therein), which is an effective and efficient
evolutionary algorithm, and can also be considered as a complex network. The
algorithm consists of particles that perform random search locally, and exchange
information in the framework of their network connectivity in order to minimize
a given objective function. The ability of the algorithm to optimize arbitrary
functions is an emergent phenomenon of the dynamics between the particles.
There are also several advantages. Firstly, the algorithm is easily applied and
widely accessible. Secondly, it is incredibly capable in solving hard problems:
the objective function can be non-differentiable and even discontinuous, and the
algorithm can be applied to spaces with non connected regions. These character-
istics appear frequently in difficult real life applications and UPSO can effectively
tackle these issues. As a result, we are interested to study how the algorithm
performs in aforementioned problems (a) and (b). In any case, we believe that
this work is a useful demonstration of the ability of evolutionary algorithms in
optimization. Our contribution is in the use of an iterative normalization scheme,
which enables the application of evolutionary algorithms in this context.

The paper is structured as follows. Section 2 contains the background mate-
rial. In Sect. 3 the objective functions are formulated. Finally, Sect. 4 contains
experiments, while, in Sect. 5, a synopsis and concluding remarks are given.

2 Preliminaries

This section provides a basic understanding of the background material. To moti-
vate the problem of eigenvalue gap maximization, we examine the effect of eigen-
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values in the context of consensus networks [8]. We exhibit that the consensus
speed depends on the magnitude of the second largest eigenvalue in modulus (for
the diagonalizable case). In general, the consensus problem is grounded in the
theory of Markov chains. Details can be found in [15]. Alternatively, we refer the
interested reader to [17] for further mathematical treatments of bounds for con-
sensus speed. Furthermore, we describe the unified PSO algorithm (UPSO) [21]
with which we tackle the eigenvalue gap maximization problem.

Throughout the remainder of the paper, the structure of a network is repre-
sented by a graph G(V,E) where V = {1, 2, . . . , n} is the vertex set and E is the
ordered set containing the edges E = {(i, j) : node i listens to node j}. The set
of weights that nodes give to their neighbors can be represented by a matrix W
with elements Wi,j such that:

Wi,j =

{
Wi,j > 0, if {i, j} ∈ E,

0, if {i, j} /∈ E.
(1)

2.1 Consensus and Eigenvalues

Suppose W ∈ R
n×n is a stochastic matrix with non-negative entries so that each

row sums to one, i.e.
∑n

j Wi,j = 1, for all i ∈ {1, 2, . . . , n}. Given any x(0) ∈ R
n,

we are concerned with the convergence speed of the sequence x(t), t = 0, 1, . . .
defined by:

x(t + 1) = Wx(t) = W t+1x(0). (2)

This is known as the consensus model of DeGroot and was initially formulated as
a method for pooling probability distributions [5]. Intuitively x(0) can be seen as
the vector of beliefs of each node at time 0 (their initial approximations), and W
is the matrix of the network’s edge weights. The application of W updates the
belief of the nodes by taking a linear combination of the beliefs of their neighbors.
The consensus vector denoted by xc is given by the following limit, provided it
exists:

xc = lim
t→∞ x(t) = lim

t→∞ W tx(0). (3)

It can be seen that the existence of the limit in Eq. (3) depends on the existence
and uniqueness of a left eigenvector with eigenvalue 1. Suppose π ∈ R

n such
that πX = π is the unique eigenvector (up to normalization) with eigenvalue 1.
Then we have that:

πx(t + 1) = π(Wx(t)) = (πW )x(t) = . . . = πx(0). (4)

Taking the limit as t → ∞ above we obtain:

πxc = πx(0).

At this point it can be seen that if W is doubly-stochastic (rows and columns
sum to one), then π = [1/n, 1/n, . . . , 1/n]� is a left eigenvector, and the system
converges to the average of the values of x(0).
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We can derive sufficient conditions for the existence of the limit in Eq. (3)
using linear algebra. It is known that the dominant eigenvalue of any stochastic
matrix has modulus one. Additionally, we know from the Perron-Frobenius the-
orem that strictly positive matrices have simple dominant eigenvalues. Since the
eigenpairs of the matrices W t are the same for all t = 1, 2, . . ., we simply require
that W t0 is strictly positive for some t0 ∈ N. In terms of the graph induced by
W , the interpretation of this condition is that for all t � t0, any vertex can be
reached from any other vertex in exactly t steps. This is equivalent to requiring
that the graph of the network is irreducible and aperiodic. These conditions are
also necessary for consensus. To this end, consider, for example, the following
periodic matrix:

T =
(
0 1
1 0

)
.

The beliefs of the nodes will swap in every iteration, thus, never reaching con-
sensus. If, on the other hand, the network is reducible, the independent strongly
connected components of the network can reach consensus on their respective
averages, but not on the total average of all nodes in the network (since infor-
mation does not flow from some independent component to others).

We showcase that the convergence speed depends directly on the second
largest eigenvalue for diagonalizable matrices. We do this by considering the
spectral decomposition. Supposing W is diagonalizable, we can write:

(a) W = PDP−1,
(b) W t = PDtP−1,

where D is a diagonal matrix D = diag{λ1, λ2, . . . , λn}, P = [f1, f2, . . . , fn]�

where fi’s are the right eigenvectors of W , and P−1 = [π1, π2, . . . , πn] where
πi’s are the left eigenvectors of W . Assuming, W is generic (i.e. non-singular)
we have that:

fiπj =

{
0, if i �= j,

1, if i = j.

We can define matrices Mi for i = 1, 2, . . . , n such that:

Mk = fkπ
�
k =

⎡
⎢⎣

fk(1)πk(1) . . . fk(1)πk(n)
...

. . .
...

fk(n)πk(1) . . . fk(n)πk(n)

⎤
⎥⎦ .

Then we can check that:

MiMj =

{
0, if i �= j,

Mi, if i = j.
(5)

with these definitions, one can see that the above relation W = PDP−1 is
equivalent to:

W = PDP−1 = λ1M1 + λ2M2 + · · · + λnMn.
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By taking powers of the above equation, and due to property (5), we can see
that:

W t = λt
1M1 + λt

2M2 + · · · + λt
nMn. (6)

Eq. (6) shows that the convergence in Eq. (2) directly depends on the eigenvalues
of W . For simplicity, index the eigenvalues so that:

|λ1| � |λ2| � · · · � |λn|.

Since we are working with doubly stochastic matrices, λ1 = 1 is the dominant
eigenvalue. By the Perron-Frobenius theorem, λ1 is simple, i.e. |λ2| < |λ1| = 1,
and so limt→∞ |λ2|t = 0. Clearly, the smaller the magnitude |λ2|, the faster the
decay, and the faster the convergence of Eq. (2). The works cited in the beginning
of this section provide several proofs for the general case of irreducible and
aperiodic Markov Chains. In general, the second largest eigenvalue in magnitude
bounds the convergence speed of Eq. (2) from above.

2.2 Relevant Approaches

The previous subsection demonstrated that in order to maximize the asymptotic
speed of convergence of the DeGroot model, one has to minimize the second
largest eigenvalue in modulus. In the literature, the second largest eigenvalue
magnitude is often abbreviated as SLEM and its minimization solves the Fastest
Mixing Markov Chain (FMMC) problem. It has been solved for medium and
large, symmetric problems by Boyd et al. using a sub-gradient method [2,26].
In fact, they show that SLEM minimization can be cast as a Semi-Definite
Program (SDP). To see the formulation of the problem one can simply observe
that the complete graph with equal weights yields the fastest possible network.
It corresponds to full connectivity (all nodes communicate with all other nodes),
and it converges to the average in one iteration. Obviously this particular case is
of no practical interest. We would like to impose the network’s communication
restrictions. The maximisation of the asymptotic convergence speed and the
per-step convergence speed are defined by the following two problems:

min �(W − 11�n−1),

s.t. W ∈ S,

1�W = 1�,

W1 = 1.

and

min
∥∥W − 11�n−1

∥∥ ,

s.t. W ∈ S,

1�W = 1�,

W1 = 1.

(7)

respectively. The matrix 11�n−1 is known as the averaging matrix and corre-
sponds to a complete graph with all weights equal to 1/n. The first problem
minimises the spectral radius (i.e., the largest absolute value of the eigenvalues
of the matrix) and is generally hard to solve because it is non-convex and not
Lipschitz continuous [20]. The second problem minimises the spectral norm, that



540 P. K. Syriopoulos et al.

is, ‖W‖ is the largest singular value of W . If W is constrained to be symmet-
ric, then the two problems coincide. The set S is the network’s communication
restrictions and it corresponds to Eq. (1).

The problem of optimizing the network itself is concerned with finding the
sparsest possible communication graph, on a given set of nodes, for a given
asymptotic convergence speed target (given in terms of the modulus of the sec-
ond largest eigenvalue). Our solution to this problem is inspired by the work of
authors in [16]. Their work is concerned with continuous time distributed con-
sensus, but it is easily relatable to the discreet equivalent. Their aim is to solve
the following problem:

min J(W ) + γ card(W ), (8)

where J(W ) is a measure of performance, card(W ) is the number of non-zero
elements of the matrix W , and γ is a scalar factor. They do this by considering a
relaxation of the card(·) function and forming an SDP. They solve problem (8),
and follow with a “polishing step” (of the sparse network) to optimize for conver-
gence speed. Our work differs in the fact that the “sparsification” of the network
is done simultaneously with the convergence speed optimization. Moreover, we
treat the convergence speed as an input: a target for asymptotic convergence
speed given in terms of SLEM, and the final output is a network optimized for
sparsity with given speed.

2.3 Unified Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization method
inspired by the aggregating behaviors of populations. Given an objective func-
tion to be minimized, a population of candidate solutions (particles) is moved
around in the search space in accordance with a set of mathematical formulas
which dictate the particles’ positions and velocities. The movement of each par-
ticle of the swarm is influenced by its local best-known position, and also by
the best-known positions of the swarm. Iterating the process is expected to shift
the swarm towards a good candidate solution. We can distinguish between two
approaches: the local approach and the global approach. In the global approach,
particles take into account the overall best position ever found by all particles in
the swarm. Known as global PSO variant (gbest), this approach has a good con-
vergence ability towards the global best positions found during the optimization
process, and is distinguished for its exploitation abilities. On the other hand,
in the local PSO variant (lbest), particles take into account the best position
ever found by neighboring particles only, thus, having better exploration ability.
The local variant is better at detecting the most favorable regions of the search
space. The Unified Particle Swarm Optimization (UPSO) [21] variant harnesses
both properties. Through the use of a new parameter u ∈ (0, 1), called unifica-
tion factor, it controls the impact of exploitative and exploratory characteristics.
Suppose N is the swarm size, n is the dimension of the problem at hand, Vi is
the velocity of the particle xi, Xi is the position of the particle xi, Pi is the best
position ever visited by particle xi. Also, let Gi(t+1) denote the velocity update
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of the i-th particle, xi, for the global PSO variant with constriction coefficient χ,
which is defined as:

Gi(t + 1) = χ
(
Vi(t) + c1r1(Pi(t) − Xi(t)) + c2r2(Pg(t) − Xi(t))

)
, (9)

and Li(t+1) denote the corresponding velocity update for the local PSO variant:

Li(t + 1) = χ (Vi(t) + c′
1r

′
1(Pi(t) − Xi(t)) + c′

2r
′
2(Pli(t) − Xi(t))) , (10)

where r1, r2, r
′
1, r

′
2 are stochastic parameters uniformly distributed within the

range [0,1], χ is a parameter called constriction coefficient or constriction factor
(with typical value χ = 0.729), c1, c2, c

′
1, c

′
2 are weighting constants called cogni-

tive and social parameter respectively (usually set to 2.05), g denotes the index
of the overall best position, and li denotes the best position in the neighborhood
of xi. Then, the velocity Vi and the position of the particle Xi are updated as
follows:

Vi(t + 1) = uGi(t + 1) + (1 − u)Li(t + 1), (11)

Xi(t + 1) = Xi(t) + Vi(t + 1). (12)

Eqs. (11) and (12) indicate that the new shifted position of a particle in UPSO is
made up of a weighted combination of the Global and Local PSO position shifts.
Consequently, both the local’s inherent exploration capabilities and the global’s
inherent exploitation capabilities contribute. In the special cases where the uni-
fication factor u = 0 and u = 1, UPSO coincides with the original local and
global PSO variant, correspondingly. Values around the middle point, u = 0.5,
are expected to produce more balanced behaviors with respect to the explo-
ration/exploitation abilities. Several additional PSO methods, together with
standard parameter settings have been proposed (see e.g., [21]).

3 Problem Formulation

In this section we formulate objective functions for the key problems presented in
the introduction: (a) eigenvalue gap maximization, and (b) the maximally sparse
network given asymptotic convergence speed target. Our approach is relatively
straight forward. We utilize the UPSO algorithm because it can be effectively
applied to difficult problems, including among others, problems with a discontin-
uous function. It is also worth noting that an effective solution of aforementioned
problem (b) is enabled by an effective solution of the problem (a).

Start by fixing a graph G(V,E), and a corresponding doubly-stochastic
weight matrix W ∈ R

n×n. We index the eigenvalues of W so that:

1 = |λ1| � |λ2| � · · · � |λn|.

Note that |λ1| = |λ2| occurs in three cases: (i) W induces a periodic graph, (ii)
W induces a graph with more than one strongly connected components, (iii)
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both (i) and (ii). As indicated in Subsect. 2.1 these cases are of no interest to
us. Denote the eigenvalue gap of W as:

egap(W ) = ||λ1| − |λ2|| , (13)

we define the function:

L(W ) =

{
−egap(W ), if egap(W ) �= 0,

∞, if egap(W ) = 0.
(14)

There are several things to note. First, eigenvalues need to be calculated, a task
which is computationally expensive. We can ease the computational burden by
using Lanczos algorithm for the approximation of dominant eigenvalues (see for
example [23]). Secondly, the loss function disregards reducible and/or aperiodic
matrices by giving them maximum penalty. This should not be a problem for
evolutionary algorithms. Last but not least, the loss function (14) has to be
minimized for weight matrices satisfying the following restrictions:

(a) W1 = 1�W = 1 (doubly-stochastic).
(b) Wi,j = 0 if {i, j} /∈ E.

The second restriction can be satisfied naturally by a vectorization of the sparse
matrix W . If there are k = |E| edges (here |E| denotes the cardinality of the
edge set E), then vec(W ) ∈ R

k. The first restriction is crucial and needs to be
discussed. There are several ways by which one might try to restrict the atten-
tion of the particles to doubly-stochastic matrices. One of them is to penalize
deviations of the sum of the rows and columns from unity. According to our
experience this procedure is not efficient. Allowing the particles to search the k-
dimensional Euclidean space (where k = |E|) makes it very difficult to randomly
come across a doubly stochastic matrix. Even if that happens, the evolution of
the velocity vectors makes it very difficult to reach a different doubly-stochastic
matrix. To get around this issue, we find a map from the Euclidean space to the
set of doubly-stochastic matrices with a given sparsity pattern. This way, the
particles will be able to search the Euclidean space, then map their position into
the set of doubly-stochastic matrices, and retain the relevance of the velocity
vectors. The loss function, then, essentially becomes a composition of Eq. (14)
with that mapping.

We present an iterative normalization scheme for constructing a doubly
stochastic matrix. The idea is to normalize the rows and the columns of W
iteratively until the matrix becomes doubly stochastic. The proposed iterative
normalization scheme is exhibited in Algorithm 1.

Iterative normalization is related to the Sinkhorn-Knopp algorithm [24]. It
is shown that it converges in linear time and the only requirement is that the
initial matrix W has support. It should also be seen that the sparsity pattern of
W remains unchanged.

Denoting the iterative normalization function as N(·) there are two ways to
incorporate iterative normalization in the UPSO algorithm and both of them
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Algorithm 1. Iterative Normalization I
1: function Normalize(W , k = 10)
2: dim ← the dimension of W , i.e. n
3: for i = 0, 1, . . . , k do
4: for j = 0, 1, . . . , dim do
5: Wj ← Wj/

( ∑dim
k=1 Wj,k

)

6: W ← W�

7: if W is doubly-stochastic then
8: return W

9: else
10: Normalize(W )

are viable. One way is to incorporate it into the loss function. Then, the loss for
problem (a) becomes:

La(W ) = L ◦ N(W ) = L(N(W )). (15)

The other is to incorporate N(·) into the UPSO step. In that case the UPSO
equations for particle i become:

Gi(t + 1) = χ (Vi(t) + c1r1(Pi(t) − Xi(t)) + c2r2(Pg(t) − Xi(t))) ,

Li(t + 1) = χ (Vi(t) + c′
1r

′
1(Pi(t) − Xi(t)) + c′

2r
′
2(Pli(t) − Xi(t))) ,

Vi(t + 1) = uGi(t + 1) + (1 − u)Li(t + 1),

Xtemp
i (t + 1) = Xi(t) + Vi(t + 1),

Xi(t + 1) = N
(
Xtemp

i (t + 1)
)
.

(16)

In our experience, without iterative normalization, the velocity vector is tasked
with determining the absolute change necessary of the state vector Xi =
vec(Wi). In contrast, the output of N(Wi) is determined by the relative mag-
nitudes of the elements of Wi. By composing the loss function (14) with N(·),
the velocity vectors are now tasked with determining favorable changes for the
relative magnitudes of the elements of Xi(t + 1) instead. To elaborate a little
further, the elements of the velocity vectors may contain positive elements only
(although not necessarily). The relative magnitudes of these elements translate
to changes in the relative magnitudes of the elements of the state vectors Xtemp

i .
These, in turn, determine a doubly-stochastic matrix through iterative normal-
ization. Both schemes (15) or (16), results in effective solutions for eigenvalue-gap
maximization with UPSO and other evolutionary algorithms.

For the problem of optimizing the network itself, we would like to provide the
number of nodes n, and a target eigenvalue gap denoted by etgtgap ∈ (0, 1). The
task is to find a positive weight matrix W ∗ ∈ R

n×n which satisfies the following:

(a) It is doubly-stochastic: W ∗1 = 1�W ∗ = 1.
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(b) It attains the target eigenvalue gap: L(W ∗) = etgtgap.
(c) It is as sparse as possible, i.e. card(W ∗) is as small as possible.

We achieve the above by allowing for a trade-off between the deviation from
the target eigenvalue gap, and the number of non-zero elements of the corre-
sponding weight matrix W . When the trade-off is favorable, particles in UPSO
will remove an edge of W , and continue subsequent iterations by improving the
loss until the next trade-off is favorable. Note that this is happening with a single
initialization, a single UPSO swarm. Doing this is enabled by UPSO’s ability to
perform well in problem (a). Furthermore, to facilitate the process, we find a
suitable relaxation for the card(·) function that penalizes small entries of W .
First we add a safety loop in the iterative normalization scheme. If an entry of
W is sufficiently small, we turn it to zero. To this end we give the following
Algorithm 2:

Algorithm 2. Iterative Normalization II
1: function Normalize(W , k = 10, threshold = 0.01)
2: dim ← the dimension of W , i.e. n
3: for every entry of W do
4: if Wi,j < thresholds then Wi,j ← 0

5: for i = 0, 1, . . . , k do
6: for j = 0, 1, . . . , dim do
7: Wj ← Wj/

( ∑dim
k=1 Wj,k

)

8: W ← W�

9: if W is doubly-stochastic then
10: return W

11: else
12: Normalize(W )

This will enable us to reliably identify the graph associated with the weight
matrix W . For the remainder of the paper at hand, for the sake of readability,
we simply write W for the matrix that results after iterative normalization (c.f.,
Algorithm 2). We define the adjacency matrix AW associated with W whose
entries are given by:

AW
i,j =

{
0, if Wi,j = 0,
1. if Wi,j > 0.

Then, the relaxation of the card(·) function for a particular W matrix is given
by:

C(W ) =
∑
i,j

(AW
i,j − Wi,j). (17)

Clearly, C(·) is positive and increasing with the number of non-zero elements
of W . Additionally, the smaller the entry Wi,j , the larger its contribution
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to C(W ). Thus, C essentially penalizes small entries. When a small entry Wi,j

falls below the threshold value, i.e. Wi,j < threshold, Algorithm 2 turns it to
zero, and C(W ′) ≈ C(W ) − (1 − threshold). Of course, C(·) is a discontinuous
function.

To control the eigenvalue gap, we define the following function:

D(W ) = min
( |L(W )|

etgtgap
,

etgtgap

|L(W )|
)

. (18)

That is, 0 < D(W ) < 1 if the eigenvalue gap of W deviates from the target,
while D(W ) = 1 if W attains the target eigenvalue gap. Then, the loss function
can be written as follows:

Lb(W ) =
C(W )
D(W )2

. (19)

In the loss function (19), the denominator is maximized when W attains the
target eigenvalue-gap, and the numerator is minimized when W is as sparse as
possible. The square in the denominator guarantees that reaching the target gap
is prioritized over removing edges from the graph associated with W . In our
experience, when a certain entry of the W matrix approaches the user defined
threshold value (in Algorithm 2), the particle swarm faces a trade-off between
the numerator and the denominator. If the edge associated with that entry of W
is removed, then the numerator is reduced by approximately (1 − threshhold),
however, a deviation from the eigenvalue-gap target is induced, and is reflected
in the denominator. The next section shows that UPSO performs nicely in both
problems: eigenvalue gap maximization, and, maximization of network sparsity
given an asymptotic convergence speed target.

A final note concerns the restriction of search to symmetric matrices. The
simplest way to do this is to augment the Eqs. (16) with an extra equation to
“symmetrize” the doubly-stochastic matrix. That is, supposing Wi(t + 1) is the
matrix corresponding to vector Xi(t + 1), the following step is taken directly
after iterative normalization:

W
′
i (t + 1) =

(
Wi(t + 1) + W�

i (t + 1)
)
/2. (20)

The new vectorized position of the particle is X
′
i(t + 1) = vec(W

′
i (t + 1)).

4 Experiments

The experiments carried out are restricted to symmetric edge weights. We con-
sider two 5×5 graphs with known optimal eigenvalue-gaps. The graphs are shown
in Fig. 1. We use loss function in Eq. (14) with the augmented UPSO Eqs. (16)
together with Eq. (20) for “symmetrization”. In our experiments we find optimal
or near-optimal eigenvalue-gaps. We employ the widely used convention of 4 |E|
particles. Then, we test objective (19) on the sparse matrix identification prob-
lem. We do this on a graph of 30 nodes, with eigenvalue-gap target of 0.2. The
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result is comparable to that of [16], however, in contrast to [16], we have chosen
the asymptotic speed of convergence. In addition we have observed that UPSO
on the “sparsification” problem with the objective function of Eq. (19) usually
finds effective solutions with way less than 4 |E| particles. In all cases, the swarm
particles communicate with 4 neighbors in a cyclic manner.

With optimal SLEM values of 0.4286 and 0.25, the optimal eigenvalue-gaps
of the graphs in Fig. 1 are 0.5714 and 0.75 respectively [2]. Our experiments
indicate that UPSO can find the optimal, or near-optimal values. The results
can be seen in Table 1.

For the considered sparsification problem, on a graph of 30 nodes, UPSO
with objective function of Eq. (19) and etgtgap = 0.2 produced a graph with 57
bidirectional edges. The number of particles used was 200, and the number of
iterations was 400. The final eigenvalue-gap is exactly 0.2 (Fig. 2).

Fig. 1. Two small networks with known optimal eigenvalue-gaps e∗ and optimal edge
weights given in [2].

Table 1. Maximal eigenvalue-gaps produced by UPSO for several unification parameter
values u. The optimal eigenvalue gap of Graph (a) is 0.5714 and the optimal eigenvalue
gap of Graph (b) is 0.5. Number of iterations: 400. Bold-face entries indicate optimal
values.

u Graph (a) Graph (b)

0 0.5634 0.7500
0.25 0.5714 0.7500
0.5 0.5660 0.7489

0.75 0.5714 0.7492

1 0.5714 0.7498
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Fig. 2. Graph on 30 nodes with symmetric weight matrix. It contains 57 bidirectional
edges and 5 non-zero diagonal elements.

In a future correspondence, we will also examine the case of asymmetric
weight matrices. A relevant work can be found in [9].

5 Synopsis and Concluding Remarks

We tackled two difficult problems using unified particle swarm optimization
(UPSO). Namely, (a) eigenvalue-gap maximization on doubly-stochastic matri-
ces with sparsity constraints, and, (b) sparse doubly-stochastic matrix identifica-
tion with given eigenvalue-gap target. The intricacy we faced is that the domains
of these problems are hard to navigate. We get around this issue by using an
iterative normalization procedure that maps the Euclidean space to the domain
of the respective problem. UPSO seems to provide optimal or near optimal solu-
tions to problem (a) with symmetric edge weights, and yields effective solutions
to problem (b). In a future correspondence, we would like to study the prop-
erties of the iterative normalization scheme, and assess the ability of UPSO to
find optimal eigenvalue-gaps for matrices with asymmetric edge weights, and
compare with other evolutionary algorithms.
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