
Survey on KNN Methods in Data Science

Panos K. Syriopoulos(B), Sotiris B. Kotsiantis , and Michael N. Vrahatis

Computational Intelligence Laboratory, Department of Mathematics,
University of Patras, 26110 Patras, Greece

{p.syriopoulos,sotos,vrahatis}@math.upatras.gr

Abstract. The k-nearest neighbors (KNN) algorithm remains a useful
and widely applied approach. In the recent years, we have seen many
advances in KNN methods, but few research works give a holistic account
of all aspects of KNN and the progress made. This paper is a brief survey
on modern KNN methods and their role in data science. Furthermore,
we survey: the challenges, how they are approached in the literature, the
impact of the distance metric, several KNN variations, as well as query
methods.

Keywords: KNN methods · Data science · Instance based learning

1 Introduction

KNN belongs to the family of instance-based learning algorithms, a concept
explained by Aha et al. [2]. Simply put, the training instances are stored in
memory without explicitly learning a model. The training instances (referred to
as “knowledge”, training set, or simply dataset) will only be processed in the
prediction phase. For each new data instance, a query is made to the knowledge
base and, only then, the knowledge returned by the query is processed to pro-
duce a prediction. In the simplest case of KNN, the query returns the k nearest
data points to the new instance (based on some distance or similarity metric).
The intuition is that similar examples are good predictors of unseen examples.
Apart from the simplicity of the algorithm, KNN classification enjoys a theo-
retical guarantee: the probability of error is bounded above by twice the Bayes
probability of error (Loizou and Maybank [33]).

In KNN classification, the output is a class membership and is usually deter-
mined by the majority class of the instances returned. In KNN regression, the
output is determined by the average of neighboring data points. With little to
no training time, KNN is a useful tool for “off-the-bat” analysis of data sets.
It is versatile, easy to implement and makes no assumptions on the data. An
early review of KNN classification is given by Cunningham and Delany [10].
The core issues were: (a) how to determine the appropriate similarity/distance
metric, (b) how to determine the user-defined parameter k, (c) how to address
computational complexity issues in large datasets. Many works have addressed
these issues since then. This survey gives an overview of modern developments
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 379–393, 2022.
https://doi.org/10.1007/978-3-031-24866-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_28&domain=pdf
http://orcid.org/0000-0002-2247-3082
http://orcid.org/0000-0001-8357-7435
https://doi.org/10.1007/978-3-031-24866-5_28


380 P. K. Syriopoulos et al.

with respect to these core issues but also intends to exhibit the utility of KNN
in data science in general.

The structure of this paper is as follows: Sects. 2–4 are concerned with the
high level concepts of KNN algorithms. Specifically, Sect. 2 is a recap of the
challenges related to KNN, and provides descriptions of how certain algorithms
tackle these issues. Section 3 is focused on the choice of distance metric, metric
learning and the role of feature space transformation. Section 4 describes several
recent KNN variations that we find interesting. The rest of the chapters are as
follows: Sect. 5 is concerned with prototype selection and generation, and feature
selection methods. Section 6 is dedicated to matching issues related to hashing
algorithms, partition trees, and graph techniques. A lot of work related to scaling
KNN for big data is also presented in Sect. 6. Finally, a synopsis and concluding
summary are presented in Sect. 7.

2 Challenges

KNN is a simple and non parametric algorithm (does not make any assumption
on the distribution of the training instances). However, proper tuning of the
hyper-parameter k is of crucial importance. Figure 1(a) is an example where
different parameter values result in different classification outcome. If k = 3 the
unseen observation (the ‘x’ mark on the figure) is classified as blue, whereas
if k = 6 it is classified as orange. Figure 1(b) demonstrates how the decision
boundary might look like for a particular choice of k. A comprehensive tutorial
is given by Cunningham and Delany [11].

Fig. 1. In plot (a) the unseen observation is classified as blue for k = 3 while it is
classified as orange for k = 6. Plot (b) exhibits the decision boundary formed in a
3-class example. (Color figure online)

The factors that might affect KNN performance include:

1. Outliers and Noise: Outliers have a higher chance of misclassification and
noise makes the determination of a suitable k value a more challenging task.



Survey on KNN Methods in Data Science 381

2. Overlapping class regions: The region defining a class, or fragments of a
class, may overlap with the region of another class. When classes intertwine,
the classification decision may be prone to error.

3. Class imbalance: Some classes in the data set may contain significantly
less observations than other classes. This biases the prediction in favor of the
over-represented classes, especially when there is a high degree of overlap.

A recent survey on the challenges related to KNN, together with experimental
results, has been given by Zhang in [66]. The current chapter is complementary
by offering insightful descriptions of the challenges and of how they are addressed,
together with key results regarding the use of KNN algorithms in general.

The weakness of KNN in overlapping regions can be described in terms of
the statistical properties of the classes. Consider two Gaussian distributions with
different means and variances, and overlapping density functions. The Gaussian
with the smaller variance tends to dominate the decision of KNN, as samples
tend to form dense clusters in the region around the mean. In this example,
Tang and He [49] demonstrate that Bayesian estimation outperforms regular
KNN. To tackle this challenge they propose Extended-NN (ENN) which looks
at data points that consider the unseen example to be in their k-neighborhood.
The method iteratively assigns the unseen observation to classes and calculates a
class-wise coherence statistic. Total coherence is calculated by the average num-
ber of correct inclusion in the k-neighborhoods of data points (of a given class)
that consider the unseen observation to be their k-neighbor, and summing over
all the classes. The assignment with largest total coherence wins. ENN is shown
to outperform regular KNN consistently. Nonetheless, their paper demonstrates
that the incorporation of Bayesian estimation may yield promising results.

Class imbalance phenomena have been widely studied in the machine learn-
ing literature (for example He and Garcia [20], Fernández et al. [14]). Tradi-
tional pre-processing techniques include re-sampling and cost-sensitive learning.
Unfortunately, re-sampling techniques can fail to improve the accuracy of KNN
due to the usually sparse nature of minority instances in space. As a response,
researchers devise KNN specific approaches, many of which revolve around for-
mulating more appropriate decision rules.

Ando proposes in [3] Weighted Class-wise Nearest Neighbors (WCNN). He
estimates and compares conditional probabilities of class membership given
majority or minority class. The estimates are based on the distance of the unseen
observation from: (a) the kth nearest majority observation, (b) the kth nearest
minority observation. The intuition is that the distance from the kth minor-
ity class observation is generally larger. WCNN biases the decision towards the
minority class. The decision function is linear in the k-distances and the weights
are optimised for non-linear performance loss in a convex setting. Furthermore,
by construction, WCNN can work with distance data. To reduce the perplexity
of the distance features, WCNN is paired with a hierarchical clustering algo-
rithm that considers class labels. The major sub-components are regarded as
supplementary labels to facilitate optimisation. The key advantages of WCNN



382 P. K. Syriopoulos et al.

are that (a) data-balancing preprocessing algorithms may be avoided, (b) it
works directly with pairwise distance data.

Zhang et al. [70] proposed the K-Rare Nearest Neighbors (KRNN) where k
is variable so as to encompass at least some examples of the under-represented
classes, i.e. the total number of observations in a query’s neighborhood is vari-
able. Given an unknown instance, the probability of it belonging to a minority
class is modeled with a binomial distribution. The confidence interval for the
proportion of minority observations in the data set is calculated, and a modified
confidence interval is used for the proportion of minority observations in the
neighborhood of the query. Additionally, two modified Laplace estimates for the
posterior class probability are formed, and the relative position of the confidence
intervals determines which Laplace estimate is used in the decision function. The
confidence levels for the global and local confidence intervals are hyperparam-
eters of the algorithm. Experiments indicate a performance improvement over
WCNN on the datasets used.

When it comes to noise we can distinguish between noise in the attributes
and noise in the prediction variable. When attributes are numeric, noise man-
ifests itself in the statistical properties of the classes. For categorical variables,
there could be errors in the attributes and/or misclassified data points. All types
of noise deteriorate the performance of KNN. Assuming that correctly classified
points dominate their respective regions in feature space, sensitivity to noise
can be reduced by choosing a larger k value. Early noise reduction techniques
involved disregarding misclassified points in the training set. However, the sensi-
tivity of KNN’s performance to noise has motivated KNN-based anomaly detec-
tion techniques. The general idea is scoring points based on their similarity to
their neighbors, for example Bandaragod et al. [7], Pang et al. [38]. We have not
come across a paper that considers correlations between attribute values and
noise in a KNN framework.

Apart from competitive performance, KNN based anomaly detection algo-
rithms demonstrate a gravity defiant learning curve. The general understanding
is that, for most learning algorithms, the error rate decreases with the size of
the dataset, i.e. the more data the better. Contrary to the conventional wisdom,
anomaly detection techniques based on KNN reach peak performance when the
training dataset is small. Ting et al. [50] use a computational geometry argu-
ment to find closed form expressions for the lower and upper bounds of the area
under the receiver operating characteristic curve for the 1-NN anomaly detection
scheme. It is shown that the expected bounds depend on both the size of the
dataset and the proportion of anomalies, and that the bounds reach an optimal
value at a finite dataset size. Experimental results show that other KNN-based
anomaly detectors demonstrate the same behavior. This result consolidates the
role of KNN methods in data science as it provides a solid theoretical ground
for the use of KNN ensembles in anomaly detection, which would be especially
useful in the context of big data. More specifically, KNN detectors can work in
parallel on subsamples of the dataset, and achieve maximal expected accuracy.
Triguero et al. [52] advocate the use of KNN methods as means of creating smart



Survey on KNN Methods in Data Science 383

data out of big data, the main tools being KNN based noise reduction meth-
ods, and missing value imputators. Note that noise reduction methods should
be applied prior to imputators to reduce bias.

The final issue of this chapter concerns the choice of the hyperparameter k.
To the best of our knowledge the most straightforward approach seems to be
the best in terms of accuracy. Most notably, García-Pedraja et al. [17] propose
the assignment of a k value to each observation in the knowledge base, using
ten-fold cross-validation. The values are chosen by considering both the local
best k and the global best k in order to avoid large deviations in the values
assigned to neighboring points. New instances, then, inherit the k value of their
nearest neighbor. Experiments indicate improved accuracy over regular KNN.
Approaches based on direct (convex) optimization are also present, and can
also improve accuracy. Zhang et al. [67] propose a sparse reconstruction of the
dataset from itself through multiplication with a weight matrix. Non-negativity
is enforced to ensure that points are reconstructed from points with correlated
features and l1 regularization is added to the cost function to ensure sparsity. The
number of non-zero entries indicates the suitable k value for each observation.
An extra term is added to ensure that points are reconstructed with points with
similar features (i.e. are close in the feature space). Their work is extended in
Zhang et al. [68] where a decision tree, named k∗-tree, is constructed. The k∗-tree
can be searched efficiently and results in faster query times (by storing relevant
points in the leafs) for a small loss of accuracy.

3 Choice of Distance Metric

In general, data instances with d features are considered as points within an
d-dimensional feature space. Since the prediction is determined by the nearest
neighbors, the nature of KNN is such that the relative position of instances is
more significant than their absolute positions. Ideally, the distance metric should
minimize the distance between similarly classified instances, while maximizing
distance between instances of different classes.

Abu Alfeilat et al. [1] tested a large number of distance metrics on real world
datasets and found that the choice of metric significantly affects classification
performance. Specifically, there is no optimal distance metric that is suitable
for all datasets, and metrics from the same families showed similar classification
results. Additionally, some distance metrics were found to be more tolerant to
noise than others. It could be the case that some application domains favor
certain metrics over others. Hu et al. [23] conducts similar experiments for the
medical domain and find that the Chi-square distance function performs the
best.

While cross validation is an option for finding a suitable distance metric,
another approach is distance metric learning. These methods involve applying
a (linear or nonlinear) transformation to the feature space in order to max-
imise classification accuracy. Xing et al. [63] was the first to propose a convex
optimization approach. They considered the Mahalanobis distance defined by



384 P. K. Syriopoulos et al.

dA(x, y) = (x−y)�A(x−y), where A = W�W is a positive semi-definite matrix
A � 0 (here W corresponds to the space transformation). The intuition is: find
the optimal matrix A that minimizes distances between similarly labeled points
and maximizes distances between points in different classes. To see this, let
yij = 1 if the i’th and j’th points in the knowledge base belong to the same class
(i.e. yi = yj), and zero otherwise. The objective function can be written as:

maximize
∑

i,j

(1 − yij)
√
dA(xi, xj),

subject to:
∑

i,j

yijdA(xi, xj) � 1,

A � 0.

(1)

The objective function aims to maximize the distance between points belonging
to different classes while the first condition forces points belonging to the same
class to remain close to each other. In a similar approach Shalev-Shwartz et
al. [42] learns a Mahalanobis metric online and tries to enforce a scalar thresh-
old b such that points in the same class are at most b − 1 distance apart while
points in different classes are at least b+1 distance apart. Both these approaches
improve the performance of KNN and have the advantage that the optimization
problems are convex. However there is a key observation relevant to KNN that
exposes a weakness of linear space transformations. Points of the same class may
cluster in different locations in feature space and may exhibit different patterns
in their relevant positions with points from other classes. Goldberger et al. [18]
tries to circumvent this problem by introducing the novel idea of Neighborhood
Component Analysis (NCA). NCA randomly assigns neighborhoods to points
and maximizes the leave-one-out probability that the KNN label is correct. The
probability that point j is in the neighborhood of point i is inversely related to
their distance in the transformed space. Inspired by the idea that only the dis-
tances of neighbors are relevant in the objective function of Eq. (1), Weinberger
et al. [59] formulated a convex optimization problem similar to that of Eq. (1)
that sums over neighbors (instead of over all pairs of points) and whose resulting
transformation is known as the Large Margin Nearest Neighbor (LMNN).

It is clear that the choice of metric is relevant in KNN applications and that
the methods of this chapter alleviate the adverse effects of data peculiarities.
While linear transformations do improve the accuracy of KNN, their weakness
comes from the fact that they are global, yet, the distributions of classes differ in
different regions of the feature space. As a result, and by extension, all literature
on space transformations is relevant for improving KNN classification accuracy.

4 Variations of KNN

Here we briefly recite a selection of recent KNN methods that we find interesting
in dealing with the challenges in Sect. 2. Although this chapter provides a less



Survey on KNN Methods in Data Science 385

than complete account, we believe that the our references include a satisfactory
number of readings.

The state of the art seems to revolve around meaningful compositions of
existing methods and ideas. The works cited in this paragraph have been used
in conjunction with each other to produce better KNN algorithms. Pascal and
Yoshua [54] devised a variant of KNN based on k-local hyperplanes. The intuition
is that classes lie on non-linear manifolds on the feature space. The core idea
is to linearly approximate the manifold locally, and assign unseen observations
based on their distance from the (approximate) manifold of each class. Particu-
larly, suppose a set of class labels C = {1, 2, . . . , NC} where NC is the number
of classes. For each unseen data point, locate the k nearest neighbors from each
class (for a total of kNC nearest neighbors). Say NCi

= {x1, x2, . . . , xk} are
the k closest points with class label i. The local approximation of the corre-
sponding manifold is a linear combination of the points in NCi

. The coefficients
of the linear combinations are optimised to minimize the distance to the unseen
observation for each i in C, and the point is assigned to the class of the closest
linear combination. Another important “building block” is the family of fuzzy
KNN algorithms. We direct the reader to Derrac et al. [12] for a taxonomy and
experimental analysis. Meanwhile, several researchers have proposed the use of
different k-values for different regions of the feature space, i.e. Wettschereck and
Dietterich [60], Wang et al. [56], Garcia et al. [17]. Among others, Garcia et
al. [17] proposed a tenfold cross validation scheme for the assignment of differ-
ent values of k to each point in the knowledge base. Unclassified examples would
inherit the k value of their closest neighbor. Furthermore, several researchers
adopted weighting schemes to weight the labels of the k-nearest neighbors (usu-
ally according to distance), i.e. Dudani [13], Liu and Chawla [32], Gou et al. [19].

Recently, researchers combine two or several of the known approaches,
together with their own innovation, and produce algorithms that are less vulner-
able to noise and outliers, class imbalance, and class region distribution. Susan
and Kumar [47] applied a linear transformation (such as LMNN or NCA, see
Sect. 3) to the feature space and adopted a new decision rule. They split the k
nearest neighbors in two clusters. One consists of the neighbors that are closest to
the farthest neighbor, and the other consists of the neighbors that are closest to
the closest neighbor. The latter cluster, then, determines the final classification.
The rule is resilient to outliers, noise, and class imbalances because the fea-
ture space transformation has expanded distances between instances of different
classes. Yu et al. [65] combined k-local hyperplane distances with a fuzzy rela-
tive transform decision rule to tackle class imbalances. Zhang et al. [69] employed
the locality preserving projection (by He and Niyogi [22]) to reconstruct the test
sample from the training sample, resulting in a weighting of nearest neighbors.
These are but a few examples of successful combinations of ideas.

5 Feature Selection and Data Reduction

This chapter is concerned with data reduction techniques. These methods revolve
around disregarding irrelevant and/or redundant dimensions of a dataset, or,



386 P. K. Syriopoulos et al.

disregarding unnecessary data points. These methods are valuable in practice
as they may result in greater accuracy, reduced runtimes, and reduced memory
requirements.

The accuracy of distance based algorithms can be severely degraded with
high-dimensional data due to the curse of dimensionality. Feature selection (FS)
techniques aim at reducing the dimensionality of the data, thus, improving the
accuracy of the learning algorithm. The goal is to identify a small subset of fea-
tures that maximizes a measure of accuracy. A broad categorization of FS meth-
ods includes filter-based methods, wrapper-based methods, embedded methods,
and hybrid methods. For more information we refer the reader to Li et al. [30].
Lets consider a general strategy for FS that includes (a) a feature subset selector,
(b) a feature subset evaluator. Usually, in wrapper-based methods, a machine
learning model is re-trained and tested with the dataset projected on the current
feature subset (in order to evaluate its performance). In these cases, KNN offers
a significant speedup when the distance function is calculated recursively. For
example, the d-dimensional Euclidean distance satisfies:

dE(x, x′)2 =
d−1∑

i=1

(xi − x′
i)

2 + (xd − x′
d)

2.

Wang et al. take the aforementioned approach in [55]. Many approaches in the
literature select KNN for subset evaluation, e.g. Tahir et al. [48] propose a Tabu
search strategy for subset generation. A challenge in the FS literature is instabil-
ity. In many cases the number of features far exceeds the number of observations.
As a result, the features selected by certain algorithms (most notably the ran-
dom forest approach) highly depend on the initial data sample. Ensemble KNN
wrapper methods are believed to be able to tackle instability issues (Li et al.
[31], Park and Kim [39]). In the context of filter-based methods, a comparative
study by Rogati and Yang [41] showed that KNN methods were amongst the top
three performers at year 2001, indicating that KNN can benefit greatly from FS
methods.

In a work more intimately related to KNN, Xiao and Chaovalitwongse [62]
showed that the FS problem can be cast as a convex optimisation problem if
the decision is based on the distance to the centroids of each class. The idea is
to learn a Mahalanobis matrix (similarly to what is shown in Sect. 3) and add
a l1 regularization term in the loss function. l1 regularization promotes sparsity
for the Mahalanobis matrix, which effectively nullifies certain dimensions of the
data.

Data reduction methods attempt to reduce the number of training instances.
The idea is to select, or artificially generate prototypes that faithfully represent
the given target concept. Ideas include retaining instances that are close to the
decision boundary, or, retaining instances near the centers of the class clusters.
Wrapper-based subset search and evaluation strategies are also present. A com-
plete taxonomy, comparison, and extensive experimentation is given in Garcia
et al. [16]. A valuable insight is that efficient query methods, such as approxi-
mate nearest neighbors (described in the next chapter), can compete in run-time



Survey on KNN Methods in Data Science 387

performance with regular KNN even when the initial dataset is reduced in size.
Another observation is that the time complexity of these algorithms were gener-
ally O(n2d2) or higher, where n is the number of data points and d the number
of features, together with high storage requirements. Arnaiz-González et al. [5]
propose a linear complexity algorithm using locality sensitivity hashing (LSH).
Even though the data reduction rates and the resulting classification accuracy
were not among the top performers, it is a solution for extremely large datasets,
and their paper provides descriptions of many other data reduction algorithms.
Additionally, Triguero et al. [51] provide a distributed solution using the MapRe-
duce framework. Recent publications, among others, include prototype selection
for imbalanced datasets: Sisodia and Sisodia [45], prototype selection with local
feature weighting: Zhang et al. [71], prototype selection for KNN regression: Song
et al. [46].

6 Nearest Neighbor Matching Algorithms

It is important to note that when working with high dimensional features, there is
no known exact nearest-neighbor search algorithm with acceptable efficiency. To
enhance the speed of queries, most practical applications settle for approximate
search. The neighbors returned by approximate search techniques may not be
the k-nearest, but they are typically close to the k-nearest neighbors. Regardless
of whether KNN is used as a classifier, or as a tool for aforementioned purposes,
this chapter aims to show that KNN can be a scalable solution.

When the data set is large, O(dn) query time-complexity renders KNN algo-
rithms intractable for certain applications. Several solutions have been studied.
When the number of training instances is large, special data structures (par-
titioning trees, neighboring graph techniques) can enhance query speeds sig-
nificantly. The main disadvantage of such methods is how they scale with the
dimensionality of the data. Techniques such as hashing counteract this problem.

A simple and popular hashing method is the locality sensitive hashing (LSH),
Indyk and Motwani [25]. The idea is to hash the data so that the probability
that hashes coincide is much higher for points that are close together. Formally,
locality sensitivity is defined by four parameters, (r1, r2, p1, p2). Given some dis-
tance function d, a family of hash functions H is (r1, r2, p1, p2)-sensitive if for
any two points p, q in the data set the following conditions are fulfilled:

1. if p ∈ B(q, r1), then Prh∈H[h(p) = h(q)] � p1,

2. if p /∈ B(q, r2), then Prh∈H[h(p) = h(q)] � p2,

where B(p, r) denotes the hypersphere centered at point p with radius r. For
this to be meaningful, it is essential that probabilities p1, p2 satisfy p1 > p2,
and r1 < r2. The gap between p1 and p2 can be amplified by concatenating
several hash functions. Practically, a collection of hashes split the data points into
several partitions. To process a query, brute force search is applied to elements
of the partitions with corresponding hash values. LSH is grounded in the theory



388 P. K. Syriopoulos et al.

of random projections. In the simplest case, points are projected on random
lines passing through the origin. These lines are then discretized into small line
segments each with a corresponding id. Thus, a table of hash codes is created,
each entry having pointers to the corresponding data points. This allows for
the creation of data structures that can be searched efficiently. A generalization
named Density Densitive Hashing (DSH) also exploits the distribution of the
data [28].

Hashing methods result in fast and effective queries. Query times achieved
are sublinear. In general, the quality of the hash functions determine the quality
of the method (for details see Muja and Lowe [36]). In fact, the space parti-
tions produced by random projections had been widely studied in the average
case. In the last decade a lot of work has been dedicated in studying worst case
scenarios. To illustrate what is meant by average and worst case scenario, con-
sider the random projection method described in the previous paragraph. If a
dataset consists of points sparsely distributed around the origin, the probability
of collision of far away points is small. On the contrary, if there is a dense clus-
ter of points in the dataset (and away from the origin), these points are likely
to collide with far away points. For this reason, data-dependent hashing meth-
ods have been developed. These methods aim for data optimal (approximate)
nearest neighbors search, for details see He et al. [21], Xu et al. [64], Iwamura
et al. [26], Andoni and Razenshteyn [4]. In the recent years, the literature on
hashing methods has grown and we direct the reader to the survey by Wang
et al. [57].

In the family of partitioning trees, the kd-tree (Friedman et al. [15]), has
been one of the best known neighbor matching algorithms with logarithmic time
complexity, but it scales poorly with the number of dimensions (and in fact is
comparable to exhaustive search when the number of dimensions is high, see
Indyk [24]). Several authors have improved kd-trees in order to speed up KNN
search. To name a few, Beygelzimer et al. [8] proposed cover-trees, Silpa-Anan
and Hartley [44] proposed optimised kd-trees. Nister and Stewenius [37] proposed
the vocabulary tree, which uses hierarchical k-means. In a comparison by Muja
and Lowe [35] it was shown that the multiple randomized trees are the most
effective for high dimensional data.

Jegou et al. [27] proposed a product quantization approach in which the
feature space is decomposed into low dimensional subspaces in which the data
points are represented by compact codes. Babenko and Lempitsky [6] proposed
the inverted multi-index, obtained by replacing the standard quantization with
product quantization. A more in-depth analysis is given in review papers by
Vasuki and Vanathi [53], Wu and Yu [61].

Nearest neighbor graph methods build graphs where vertices are data points
or subsets of data points. In this case the query is an effective exploration of the
graph. Empirical results place graph methods in the current state of the art for
query methods. We direct the reader to recent surveys by Wang et al. [58] and
Shimomura et al. [43].



Survey on KNN Methods in Data Science 389

Finally, a lot of work has been done for decentralized framework solutions.
Chatzimilioudis et al. [9] developed Spitfire, a high performance distributed algo-
rithm. Gieseke et al. [40] presented a GPU based algorithm for kd-trees. Kim et
al. [29] propose parallel KNN using MapReduce. Maillo et al. [34] also provided
a solution for exact k-nearest neighbor classification based on Spark.

7 Synopsis and Concluding Remarks

We have studied a variety of aspects related to KNN. Challenges related to:
(a) noise and outliers, (b) overlapping class regions, and (c) class imbalanced
data have been analyzed through key works in the literature. The role of KNN
in data pre-processing, including de-noising and missing value imputations has
been presented. The choice of hyperparameter k has also been analyzed. The
impact of the distance metric used has been explored, together with metric-
learning techniques. The merit of KNN in feature selection algorithms has been
discussed, together with the effect of such methods on KNN’s accuracy. We
further explored data reduction techniques. Moreover, query methods, together
with mentions of parallel and distributed solutions have been mentioned.

We would like to point out here that KNN is a non parametric, instance based
algorithm that makes no assumptions about the underlying data distribution.
This trait is crucial due to the fact that real world data rarely obey typical
theoretical assumptions. KNN is easy to implement and its basic principle is
easy to understand. Some challenges regarding the choice of the right distance
metric have been overcome with data driven approaches like metric learning.
Localization of the k-value, and different decision rules (subspace distances, fuzzy
criteria, feature weighting etc.) have also increased classification accuracy.

The state-of-the-art seems to revolve around the meaningful composition of
ideas that make the algorithm more resilient to class imbalances, noise, and
outliers. The two major drawbacks are the storage requirements and the query
run-time complexity. Methods of prototype selection and generation can reduce
the number of training instances required without hindering classification accu-
racy greatly. Methods of feature selection can reduce the dimensionality of the
data by discarding irrelevant/redundant features. KNN based methods have been
developed for noise reduction, outlier detection, and missing value imputation
among other applications. Theoretical results indicate that KNN anomaly detec-
tors demonstrate a gravity defiant learning curve. These issues enable the usage
of KNN anomaly detectors ensembles in the context of large datasets.

Approximate nearest neighbor methods significantly reduce query run-times,
allowing for applications on data intensive domains. Hashing, quantization,
neighboring graph techniques, and indexing methods all contribute to the diverse
literature that enables the use of KNN in large data domains. GPU based dis-
tributed algorithms and adaptations for data streams are a testament to KNN’s
utility as a classification method or as part of larger machine learning models.



390 P. K. Syriopoulos et al.

References

1. Alfeilat, H.A., et al.: Effects of distance measure choice on K-nearest neighbor
classifier performance: a review. Big Data, 7 (2019)

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. (1991)

3. Ando, S.: Classifying imbalanced data in distance-based feature space. Knowl. Inf.
Syst. 46 (2016)

4. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate
near neighbors. In: Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, STOC 2015, pp. 793–801. Association for Computing
Machinery, New York, NY (2015). ISBN 9781450335362

5. Arnaiz-González, Á., Díez-Pastor, J.-F., Rodríguez, J.J., García-Osorio, C.:
Instance selection of linear complexity for big data. Knowl.-Based Syst. 107, 83–95
(2016)

6. Babenko, A., Lempitsky, V.: The inverted multi-index. IEEE Trans. Pattern Anal.
Mach. Intell. 37(6), 1247–1260 (2014)

7. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Wells, J.R.: Efficient
anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE
International Conference on Data Mining Workshop, pp. 698–705. IEEE (2014)

8. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23rd International Conference on Machine Learning, pp. 97–
104 (2006)

9. Chatzimilioudis, G., Costa, C., Zeinalipour-Yazti, D., Lee, W.-C., Pitoura, E.:
Distributed in-memory processing of all k nearest neighbor queries. IEEE Trans.
Knowl. Data Eng. 28(4), 925–938 (2015)

10. Cunningham, P., Delany, S.: k-nearest neighbour classifiers. Mult Classif. Syst. 54,
04 (2007)

11. Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers - a tutorial. ACM
Comput. Surv. (CSUR) 54(6), 1–25 (2021)

12. Derrac, J., García, S., Herrera, F.: Fuzzy nearest neighbor algorithms: taxonomy,
experimental analysis and prospects. Inf. Sci. 260, 98–119 (2014)

13. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. SMC-6(4), 325–327 (1976)

14. Fernández, A., del Río, S., Chawla, N.V., Herrera, F.: An insight into imbalanced
big data classification: outcomes and challenges. Complex Intell. Syst. 3(2), 105–
120 (2017)

15. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. (TOMS) 3(3), 209–226
(1977)

16. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 417–435 (2012)

17. García-Pedrajas, N., Romero del Castillo, J.A., Cerruela-García, G.: A proposal
for local k values for k -nearest neighbor rule. IEEE Trans. Neural Netw. Learn.
Syst. 28(2), 470–475 (2017)

18. Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood
components analysis. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems, vol. 17. MIT Press, Cambridge (2004)



Survey on KNN Methods in Data Science 391

19. Gou, J., Du, L., Zhang, Y., Xiong, T.: A new distance-weighted k-nearest neighbor
classifier. J. Inf. Comput. Sci. 9, 1429–1436 (2012)

20. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. (2009)

21. He, J., Liu, W., Chang, S.-F.: Scalable similarity search with optimized kernel
hashing. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1129–1138 (2010)

22. He, X., Niyogi, P.: Locality preserving projections. In: Thrun, S., Saul, L.,
Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16.
MIT Press, Cambridge (2003)

23. Hu, L.-Y., Huang, M.-W., Ke, S.-W., Tsai, C.-F.: The distance function effect on k-
nearest neighbor classification for medical datasets. Springerplus 5(1), 1–9 (2016).
https://doi.org/10.1186/s40064-016-2941-7

24. Indyk, P.: Nearest neighbors in high-dimensional spaces (2004)
25. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: Conference Proceedings of the Annual ACM Sympo-
sium on Theory of Computing, pp. 604–613, October 2000

26. Iwamura, M., Sato, T., Kise, K.: What is the most efficient way to select nearest
neighbor candidates for fast approximate nearest neighbor search? In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 3535–3542 (2013)

27. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

28. Jin, Z., Li, C., Lin, Y., Cai, D.: Density sensitive hashing. IEEE Trans. Cybern.
44(8), 1362–1371 (2013)

29. Kim, W., Kim, Y., Shim, K.: Parallel computation of k-nearest neighbor joins using
mapreduce. In: 2016 IEEE International Conference on Big Data (Big Data), pp.
696–705. IEEE (2016)

30. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR)
50(6), 1–45 (2017)

31. Li, S., Harner, E.J., Adjeroh, D.A.: Random KNN feature selection - a fast and
stable alternative to random forests. BMC Bioinform. 12(1), 1–11 (2011)

32. Liu, W., Chawla, S.: Class confidence weighted kNN algorithms for imbalanced
data sets. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011. LNCS
(LNAI), vol. 6635, pp. 345–356. Springer, Heidelberg (2011). ISBN 978-3-642-
20847-8. https://doi.org/10.1007/978-3-642-20847-8_29

33. Loizou, G., Maybank, S.J.: The nearest neighbor and the Bayes error rates. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-9(2), 254–262 (1987)

34. Maillo, J., Ramírez, S., Triguero, I., Herrera, F.: KNN-IS: an iterative spark-based
design of the k-nearest neighbors classifier for big data. Knowl.-Based Syst. 117,
3–15 (2017)

35. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP (1), 2 (331–340), 2 (2009)

36. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

37. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), vol. 2, pp. 2161–2168. IEEE (2006)

38. Pang, G., Ting, K.M., Albrecht, D.: LeSiNN: detecting anomalies by identifying
least similar nearest neighbours. In: 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), pp. 623–630. IEEE (2015)

https://doi.org/10.1186/s40064-016-2941-7
https://doi.org/10.1007/978-3-642-20847-8_29


392 P. K. Syriopoulos et al.

39. Park, C.H., Kim, S.B.: Sequential random k-nearest neighbor feature selection for
high-dimensional data. Expert Syst. Appl. 42(5), 2336–2342 (2015)

40. Patwary, M.M.A., et al.: Panda: extreme scale parallel k-nearest neighbor on dis-
tributed architectures. In: 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pp. 494–503. IEEE (2016)

41. Rogati, M., Yang, Y.: High-performing feature selection for text classification. In:
Proceedings of the Eleventh International Conference on Information and Knowl-
edge Management, pp. 659–661 (2002)

42. Shalev-Shwartz, S., Singer, Y., Ng, A.Y.: Online and batch learning of pseudo-
metrics. In: Proceedings of the Twenty-First International Conference on Machine
Learning, ICML 2004, pp. 94. Association for Computing Machinery, New York
(2004)

43. Shimomura, L.C., Oyamada, R.S., Vieira, M.R., Kaster, D.S.: A survey on graph-
based methods for similarity searches in metric spaces. Inf. Syst. 95, 101507 (2021)

44. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor match-
ing. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.
1–8. IEEE (2008)

45. Sisodia, D., Sisodia, D.S.: Quad division prototype selection-based k-nearest neigh-
bor classifier for click fraud detection from highly skewed user click dataset. Int.
J. Eng. Sci. Technol. 28, 101011 (2022)

46. Song, Y., Liang, J., Lu, J., Zhao, X.: An efficient instance selection algorithm for
k nearest neighbor regression. Neurocomputing 251, 26–34 (2017)

47. Susan, S., Kumar, A.: DST-ML-EkNN: data space transformation with metric
learning and elite k-nearest neighbor cluster formation for classification of imbal-
anced datasets. In: Chiplunkar, N.N., Fukao, T. (eds.) Advances in Artificial Intel-
ligence and Data Engineering. AISC, vol. 1133, pp. 319–328. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-15-3514-7_26

48. Tahir, M.A., Bouridane, A., Kurugollu, F.: Simultaneous feature selection and
feature weighting using hybrid Tabu search/K-nearest neighbor classifier. Pattern
Recogn. Lett. 28(4), 438–446 (2007)

49. Tang, B., He, H.: ENN: extended nearest neighbor method for pattern recognition
[research frontier]. IEEE Comput. Intell. Mag. 10(3), 52–60 (2015)

50. Ting, K.M., Washio, T., Wells, J.R., Aryal, S.: Defying the gravity of learn-
ing curve: a characteristic of nearest neighbour anomaly detectors. Mach. Learn.
106(1), 55–91 (2017)

51. Triguero, I., Peralta, D., Bacardit, J., García, S., Herrera, F.: MRPR: a mapreduce
solution for prototype reduction in big data classification. Neurocomputing 150,
331–345 (2015)

52. Triguero, I., García-Gil, D., Maillo, J., Luengo, J., García, S., Herrera, F.: Trans-
forming big data into smart data: an insight on the use of the k-nearest neighbors
algorithm to obtain quality data. WIREs Data Min. Knowl. Discov. 9(2) (2019)

53. Vasuki, A., Vanathi, P.: A review of vector quantization techniques. IEEE Poten-
tials 25(4), 39–47 (2006)

54. Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neighbor
algorithms. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural
Information Processing Systems, vol. 14. MIT Press, Cambridge (2001)

55. Wang, A., An, N., Chen, G., Li, L., Alterovitz, G.: Accelerating wrapper-based
feature selection with k-nearest-neighbor. Knowl.-Based Syst. 83, 81–91 (2015)

56. Wang, J., Neskovic, P., Cooper, L.N.: Neighborhood size selection in the k-nearest-
neighbor rule using statistical confidence. Pattern Recogn. 39(3), 417–423 (2006)

https://doi.org/10.1007/978-981-15-3514-7_26


Survey on KNN Methods in Data Science 393

57. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash.
IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 769–790 (2018)

58. Wang, M., Xu, X., Yue, Q., Wang, Y.: A comprehensive survey and experimental
comparison of graph-based approximate nearest neighbor search. arXiv preprint
arXiv:2101.12631 (2021)

59. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin
nearest neighbor classification, January 2005

60. Wettschereck, D., Dietterich, T.: Locally adaptive nearest neighbor algorithms.
In: Cowan, J., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information
Processing Systems, vol. 6. Morgan-Kaufmann, Burlington (1993)

61. Wu, Z., Yu, J.: Vector quantization: a review. Front. Inf. Technol. Electron. Eng.
20(4), 507–524 (2019). https://doi.org/10.1631/FITEE.1700833

62. Xiao, C., Chaovalitwongse, W.A.: Optimization models for feature selection of
decomposed nearest neighbor. IEEE Trans. Syst. Man Cybern. Syst. 46(2), 177–
184 (2016)

63. Xing, E., Jordan, M., Russell, S.J., Ng, A.: Distance metric learning with appli-
cation to clustering with side-information. In: Becker, S., Thrun, S., Obermayer,
K. (eds.) Advances in Neural Information Processing Systems, vol. 15. MIT Press,
Cambridge (2002)

64. Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.: Complementary hashing for
approximate nearest neighbor search. In: 2011 International Conference on Com-
puter Vision, pp. 1631–1638 (2011)

65. Yu, Z., Chen, H., Liu, J., You, J., Leung, H., Han, G.: Hybrid k-nearest neighbor
classifier. IEEE Trans. Cybern. 46(6), 1263–1275 (2016)

66. Zhang, S.: Challenges in KNN classification. IEEE Trans. Knowl. Data Eng. 1
(2021)

67. Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning k for KNN classification.
ACM Trans. Intell. Syst. Technol. (TIST) 8(3), 1–19 (2017)

68. Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient KNN classification with
different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst.
29(5), 1774–1785 (2017)

69. Zhang, S., Cheng, D., Deng, Z., Zong, M., Deng, X.: A novel KNN algorithm with
data-driven k parameter computation. Pattern Recogn. Lett. 109, 44–54 (2018).
Special Issue on Pattern Discovery Multi-Source Data (PDMSD)

70. Zhang, X., Li, Y., Kotagiri, R., Wu, L., Tari, Z., Cheriet, M.: KRNN: k rare-class
nearest neighbour classification. Pattern Recogn. 62, 33–44 (2017)

71. Zhang, X., Xiao, H., Gao, R., Zhang, H., Wang, Y.: K-nearest neighbors rule
combining prototype selection and local feature weighting for classification. Knowl.-
Based Syst. 243, 108451 (2022)

http://arxiv.org/abs/2101.12631
https://doi.org/10.1631/FITEE.1700833

	Survey on KNN Methods in Data Science
	1 Introduction
	2 Challenges
	3 Choice of Distance Metric
	4 Variations of KNN
	5 Feature Selection and Data Reduction
	6 Nearest Neighbor Matching Algorithms
	7 Synopsis and Concluding Remarks
	References




