DEPARTMENT OF MATHEMATCIS

DIVISION OF PURE MATHEMATICS

 

RESEARCH INTERESTS :

Universal functions, Universal Taylor (Laurent and Faber) Series, hypercyclic operators, Riemann-zeta function.

PUBLICATIONS:

  • V.Vlachou, Disjoint universality for Taylor-type operators, J. Math. Anal. Appl. 2 (2017) 1318-1330.
  • N. Chatzigiannakidou and V.Vlachou, Doubly Universal Taylor Series on simply connected domains, Eur. J. Math. 2 (2016), 1031-1038.
  • A. Bacharoglou, Ch. Kariofillis, Ch. Kontstantilaki and V.Vlachou, Smooth Universal Taylor series on doubly connected domains, Complex Variables and Elliptic Equations, 61 (2016), 374-387
  • G. Costakis, N.Tsirivas and V.Vlachou, Non-Existence of Common Hypercyclic Entire Functions for certain type of Translation Operators, Comput. Methods Funct. Theory 15 (2015), 393-401.
  • T. Christ, J. Steuding and V.Vlachou, Differential universality, Math. Nachr. 286 (2013), 160--170.
  • G. Costakis and V.Vlachou, Interpolation by universal, hypercyclic functions. , J. Approx Theory 164 (2012), 625--636.
  • N.Tsirivas and V.Vlachou, Universal Faber Series with Hadamard-Ostrowski Gaps , Comput. Methods Funct. Theory 10 (2010), 155--165.
  • V.Vlachou, Functions with Universal Faber Expansions, J.London Math.Soc. 80 (2009) 531--543.
  • J. Müller, V. Vlachou and A. Yavrian, Overconvergent series of rational functions and universal Laurent series, J. Anal. Math. 104 (2008), 235--245.
  • V.Vlachou, Universal Taylor series on a non-simply connected domain and Hadamard-Ostrowski gaps, Complex and harmonic analysis, 221--229, DEStech Publ., Inc., Lancaster, PA, 2007.
  • G. Costakis, V. Nestoridis and V.Vlachou, Smooth univalent universal functions, Math. Proc. R. Ir. Acad. 107 (2007), 101-114.
  • J. Müller, V. Vlachou and A. Yavrian, Universal overconvergence and Ostrowski gaps, Bull.London.Math.Soc. 38 (2006), 597-606.
  • G. Costakis and V. Vlachou, Universal Taylor series on non-simply connected domains, Analysis 26 (2006) 347-363.
  • G. Costakis and V. Vlachou, Identical approximative sequence for various notions of universality, J. approx. Theory 132 (2005)15--24.
  • D. Mayenberger and V. Vlachou, Construction of a universal Laurent Series, Comput. Methods Funct. Theory 5 (2005), 365--372.
  • G . Costakis and V.Vlachou , A generic result concerning univalent universal functions, Arch. Math. (Basel) 82 (2004), 344--351.
  • V. Vlachou, Coincidence of two classes of universal Laurent series, Complex Variables , 47, (2002), 1045-1053.
  • V. Vlachou, On some classes of universal functions, Analysis, 22, (2002), 149-161.
  • V. Vlachou, A Universal Taylor series in the doubly connected domain C \ {1}, Complex Variables, 47, (2002), 123-129.

;