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Abstract— Parallel processing has emerged as a key enabling
technology in modern computing. Recent software advances have
allowed collections of heterogeneous computers to be used as a
concurrent computational resource. In this work we explore how
Differential Evolution can be parallelized in a virtual parallel
environment so as to improve both the speed and the performance
of the method. Experimental results indicate that the extent of
information exchange among subpopulations assigned to different
processor nodes, bears a significant impact on the performance
of the algorithm. Furthermore, not all the mutation strategies of
the Differential Evolution algorithm are equally sensitive to the
value of this parameter.

I. INTRODUCTION

Parallel processing, that is the method of having many
small tasks solve one large problem, has emerged as a key
enabling technology in modern computing. As a result of the
demand for higher performance, lower cost, and sustained
productivity, the past several years have witnessed an ever-
increasing acceptance and adoption of parallel processing,
both for high-performance scientific computing and for more
general–purpose applications. The acceptance has been facili-
tated by two major developments: massive parallel processors,
and the widespread use of distributed computing. The most
important factor in parallel computing is the high cost of the
hardware. In contrast, users see very little cost in running their
problems on a local set of existing computers.

Exploiting recent software advances [1], [3], collections
of heterogeneous computers can be used as a coherent and
flexible concurrent computational resource. These technolo-
gies have allowed the vast number of individual Personal
Computers available in most scientific laboratories to be used
as parallel machines at no, or at a very low, cost. Network
interfaces, linking individual computers, are necessary to
produce such pools of computational power. Since network
infrastructure is currently immature to provide sufficiently high
speed data transfer interfaces, it comprises a bottleneck to the
entire system. Thus applications that exploit specific strengths
of individual machines on a network, while minimizing the
required data transfer rate are best suited for network–based
environments.

Differential Evolution (DE) is a novel minimization
method [8], capable of handling nondifferentiable, nonlinear
and multimodal objective functions. DE has been designed as a
stochastic parallel direct search method, that utilizes concepts
borrowed from the broad class of evolutionary algorithms

(EAs). The method typically requires few, easily chosen,
control parameters. Experimental results have shown that DE
has good convergence properties and outperforms other well
known evolutionary algorithms [7], [8].

In this work we explore how Differential Evolution can be
parallelized in this kind of virtual parallel environment so as to
obtain both speed and performance improvements. The paper
is organized as follows. In Section II the Differential Evolution
algorithm and the parallelization model are briefly described.
Section IV-A reports the test functions used. Section IV-
B is devoted to the presentation and the discussion of the
experimental results. The paper ends with conclusions.

II. DIFFERENTIAL EVOLUTION

As previously mentioned, DE is a population–based stochas-
tic algorithm that exploits a population of potential solutions,
individuals, to probe the search space. New individuals are
generated by the combination of randomly chosen individuals
from the population. This operation in our context can be
referred to as mutation. Specifically, for each individual �
�� ,���������������

NP, where � denotes the current generation, a new
individual ������ � (mutant individual) is generated according to
one of the following equations:� ���� � � � �"!$#&%� ')(+* �-, ��/. �0, ��21 � (1)� ���� � � � , �� ')(+* � , �� . � , �� 1 � (2)� ���� � � � ��3'4(+* � �"!$#&%� . � ��516'7(+* �0, ��8. �-, ��91 � (3)� ���� � � � �"!$#&%� ')(+* � , �� . � , �� 1:'7(+* � , �� . � ,<;� 1 � (4)� ���� � � � , �� ')(+* � , �� . � , �� 1=')(+* � ,<;� . � ,?>� 1 � (5)� ���� � � * �-, ��@' �0, ��@' �0, ��91<A5B 'C*ED � .2D � 1�* �-, ��/. �0, ��21 (6)'F*ED � .2D � 1�* � , �� . � , �� 1='C*ED � .2D � 1�* � , �� . � , �� 1
where � ��!$#G%� is the best member of the previous generation;(@HJI is a real parameter, called mutation constant, which
controls the amplification of the difference between two in-
dividuals so as to avoid the stagnation of the search process;
and K � � K � � K � � K ; � K >ML 	 �N�POQ���������P� . ���?� ' �N���������PR-S 
 , are
random integers mutually different and different from the
running index

�
. The mutation strategy of Eq. (6) is known

as the trigonometric mutation operator, and has been recently



proposed in [2]. This mutation strategy performs a mutation
according to Eq. (6) with probability T�U and a mutation
according to Eq. (2) with probability * � . T�U 1 . The values
of D � �WVX� 	 �N�POQ� B 
 and DZY are obtained through the following
equations.D � � [[]\ * � , �� 1 [[ A�D Y �D � � [[]\ * �-, ��^1 [[ A�D Y �D � � [[ \ * � , �� 1 [[ A�D Y � andD Y � [[ \ * � , �� 1 [[ ' [[ \ * � , �� 1 [[ ' [[ \ * � , �� 1 [[ �

To increase further the diversity of the mutant individuals,
the resulting individuals are combined with other predeter-
mined individuals – the target individuals – this operation
is called recombination. Specifically, for each component _
( _ �`�N�?Oa���������<b ) of the mutant individual �a���� � , we randomly
choose a real number K in the interval c I ����d . Then, we compare
this number with the recombination constant, e . If KFf4e , then
we select, as the _ –th component of the trial individual g6���� � ,
the _ –th component of the mutant individual �a���� � . Otherwise,
the _ -th component of the target vector �h��P� � becomes the _ –th
component of the trial vector. This operation yields the trial
individual. Finally, the trial individual is accepted for the next
generation if and only if it yields a reduction in the value of
the error function. This is the selection operation.

III. PROPOSED ALGORITHM

In this work we used the parallel virtual machine (PVM).
PVM is a de facto standard message passing interface. It
is an integrated set of software tools and libraries that em-
ulates a general-purpose, flexible, heterogeneous concurrent
computing framework on interconnected computers of varied
architectures. PVM is designed to link computing resources
and provide users with a parallel platform for running their
computer applications, irrespective of the number of different
computer architectures they use and where those computers
are located. It is capable of harnessing the combined resources
of typically heterogeneous networked computing platforms to
deliver high levels of performance and functionality. Its key
concept is that it makes a collection of computers to appear
as one large virtual machine, hence its name [1].

DE, like other EAs, is easily parallelized due to the fact that
each member of the population is evaluated individually [6].
The only phase of the algorithm that requires communication
with other individuals is reproduction. This phase can also be
parallelized for pairs of individuals [4], [6]. Generally, there
are two typical models for EA parallelization. The first em-
ploys fine grained parallelism, in which case, each individual is
assigned to a different processor. This approach is problematic
when the number of available processors is limited, or when
the computation of the fitness function requires information
from the entire population.

The second model, which is the one used in this paper, maps
an entire subpopulation to a processor. Thus each subpopu-
lation evolves independently toward a solution. This allows
each subpopulation to develop its own solution independently.

To promote information sharing, the best individual of each
subpopulation is moved to other subpopulations, according to
a predefined topology. This operation is called “migration”.
The topology of the proposed scheme is a ring, i.e. the best
individuals from each subpopulation are allowed to migrate to
the next subpopulation of the ring. This concept reduces the
migration between the subpopulations and consequently the
messages exchanged among the processors [5]. The migration
of the best individuals is controlled by the migration constant,i L c I ����d . At each iteration, a uniformly distributed random
number in the interval c I ����d is chosen and compared with the
migration constant. If the migration constant is larger, then
the best individuals of each subpopulation migrate and take
the place of a randomly selected individual (different from
the best) in the next subpopulation; otherwise no migration is
permitted. A high level description of the parallel algorithmic
scheme follows:

At the the master node
1. Spawn j subpopulations

each one on a different processor
2. For each generation
3. Receive a particle from each subpopulation
4. Decide for each particle if it is going

to migrate based on
i

5. Send the particles that will migrate to the
next subpopulation based on the ring topology

6. If the stop criterion for the objective function
is met send a termination signal
to all the subpopulations

At each subpopulation
1. For each generation
2. Perform a DE step
3. Send the best individual to the master node
4. Receive a migrated individual if such one

exists and assign it to a random individual
5. if a termination signal is received

terminate execution
The above algorithm could be modified by also including

the concept of aging of individuals, which prevents an indi-
vidual from surviving indefinitely [5], [7].

IV. EXPERIMENTAL RESULTS

A. Test Functions
The seven test functions selected, appear in [8].
1) Sphere:\ � *GkZ1 � >lm<n � k �m � k m L c .0o �p��Oa� o �p��Oqdr� (7)

The sphere test function is a considered to be a simple
minimization problem. The minimum is \ � *sI ��������� I�1 � I .

2) Rosenbrock’s Saddle:\ � *tkZ1 � � I�I-u�*Gk � � .vk � 1 � 'C* � .wk � 1 � � (8)k m L c . Oa� INx�y �POQ� I5xzy d{�
This is a two–dimensional test function, which is known to be
relatively difficult to minimize. The minimum is \ � * ����� 1 � I .



3) Step Function:\ � *tkZ1 � BNI0' >lm<n �}| k m�~ � k m L c .0o ���"OQ� o �p��O"d{� (9)

The minimum of this function is \ � *�.0o+.�� ��������� .0o�.��N1 � I ,
where � L c I � I ���"O"d . This function exhibits many flat regions
that can cause search stagnation.

4) Quartic Function:\ ; *GkZ1 � ���lm<n ����� u�k ;m ')�Q� � k m L c . ��� O y ����� O y d{� (10)

This is test function is designed to evaluate the behavior of
minimization algorithms in the presence of noise. To this end,� is a random variable following the uniform distribution in
the range c I ����d . The inclusion of � makes \ ; more difficult
to optimize. The functional minimum of the function is\ ; *sI ��������� I�1 f BNIhu�� c � d:��� o , where � c � d is the expectation
of � .

5) Shekel’s Foxholes:\ > *GkW1 � �I � INI O ')� � *GkW1 � k m L c . ��o � oNBN� � ��o � oNBN� d{� (11)

where, � � *tkZ1 � � ;l � n � �� ' V '�� �m<n � *tk m .w� � m 1�� �
The parameters for this function are:� � � � 	 . B OQ� . � � � I ��� � � B O 
 � whereV�� 	 I ���N�POQ� B � x 
 and � � � � � �?����� >�� �� � � � 	 . B OQ� . � � � I ��� � � B O 
 � whereV�� 	 I � o ��� I ��� o �?O I 
 and� � � � � � � � � � �:��� 	 �N�POQ� B � x 
 �
The global minimum of \ > *�. B OQ� . B O 1 � I � �N� y�ININx .

6) Corana Parabola:\ � *GkZ1 � ;lm<n � � � � *Gk m 1 � if � k m .w� m �Q� I � Izo �� � *Gk m 1 � otherwise
� (12)

where � � *Gk m 1 � I ��� o�*&� m .wI � I�o sign *t� m 1<1 �6  m , � � *tk m 1 �  m k �m , � m � | o � k m � '¡I � x ���N�N� ~ sign *tk m 1�I �]O and
  m �	 �N��� I�INI ��� I ��� I�I 
 .

The Corana test function defines a paraboloid with axes
parallel to the coordinate axes. The function is characterized by
a multitude of local minima, increasing in depth as one moves
closer to the origin. The global minimum of the function is\ � *tkZ1 � I , for k m L *¢. I � Izo � I � I�oN1 .

7) Griewangk’s Function:\q£ *GkW1 � �$�lm<n � k �mxzININI . �¢�¤m<n �a¥�¦�§ ¨ k m© �:ª ' �N� (13)k m L c .�x�I�I � xzINI dr�
This test function is riddled with local minima. The global
minimum of the function is \ £ *sI ��������� I�1 � I .

B. Presentation of Results

Numerical experiments were performed using PVM versionB � x � x and a Parallel Differential Evolution (PARDE) C++
Interface developed under the Fedora Linux

�N� I operating
system using the GNU compiler collection (gcc) version B � B �]O .

In Table I the parameter setup used in the numerical
experiments conducted is summarized. Specifically,

b
denotes

the dimensionality of the problem, NP stands for the size of the
subpopulation assigned to each of the processors employed, �
is the maximum number of generations allowed, finally, ( ande are the values of the mutation and recombination constants,
respectively. Little effort has been devoted to the selection of
the values of NP, ( and e since the scope of this work is
to study extensively, the implications of information sharing
in a parallel environment, which is controlled by the migra-
tion constant,

i
. It is worth noting that further performance

improvements can be achieved by further fine–tuning NP, ( ,
and e . The parameter T�U used by the trigonometric mutation
strategy, Eq. (6), was set to I �p� .

Test function « NP ¬ ­ ®
Sphere function ¯ ��° ��°�°�° °�± ² °�± �
Rosenbrock’s saddle

� ��° ��°�°�° °�± ² °�± ¯
Step function ¯ ��° ��°�°�° °�± ³ °�± �
Quartic function

��° ��°�° ��°�°�° °�± ³ °�± ¯
Shekel’s foxholes

� ��° ��°�°�° °�± ² °�± �
Corana’s parabola ´ � ¯ ��°�°�° °�± ´ °�± �
Griewangk’s function

��° ¯ ° ��°�°�°�° ��± ° °�± �
TABLE I

PARAMETER VALUES

Figure 1 illustrates the speedup achieved by assigning each
subpopulation to a different processor, relative to assigning all
subpopulations to a single processor. To obtain the plotted
values, the algorithm performed 1000 generations with a
migration constant equal to I � o . The setup used to obtain this
Figure was 32 Pentium III Celeron 900MhZ connected through
a 100Mbit Fast Ethernet network interface.
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Table II reports the mean number of generations required



to locate the global minimum of each test function, averaged
over all the considered mutation constants. It is clear from
Table II that the best performing mutation strategy, for all test
problems, was the first. Furthermore, Griewangk’s function
(test function µ ) appears to be the hardest one to minimize.

Test function Mutation Strategy

1 2 3 4 5 6

Sphere 231.09 611.58 247.02 341.08 409.79 642.02

Rosenbrock 82.21 386.01 130.14 220.77 271.39 371.59

Step 21.91 76.85 25.48 47.59 25.40 31.59

Quartic 244.92 249.90 260.21 406.13 454.18 244.11

Shekel 63.39 136.96 96.21 186.91 158.30 101.55

Corana 282.35 364.09 513.36 329.48 491.01 398.85

Griewangk 1872.17 1885.19 1975.61 2644.47 4448.66 2434.45

TABLE II
MEAN NUMBER OF GENERATIONS FOR THE 16–NODE MODEL

Figures 2–7 illustrate the performance of the 16–node model
for all the considered mutation strategies, on all the test
functions, for a particular migration constant. In all the B b
plots, the mutation strategies are given by the k –axis, the
test functions by the ¶ –axis, and finally, the mean number
of generations required is reported in the � –axis. Concerning
the overall performance of the alternative mutation strategies,
the worst performance is exhibited by strategies 5 and 6.
Strategies 1 and 3 appear to be the most efficient and robust.

Figures 8–14 exhibit the mean number of generations re-
quired for each migration constant,

i L c I ����d with stepsizeI �p� , for all the mutation strategies on each of the test problems.
It is evident that selecting the appropriate migration constant
has a significant impact on the performance of the algorithm.
Moreover, it appears that setting

i
close to one or to zero can

lead to a substantial increase in the number of generations
required. A superior performance is typically obtained for
intermediate values of

i
. It has already been noted from the

results of Table II and Figures 2–7 that the first mutation
strategy, Eq. (1), is the most efficient. From Figures 8–14
we can infer that this strategy also exhibits the most robust
behavior with respect to the migration constant. The third
mutation strategy, Eq. (3), also exhibits a relatively robust
behavior with respect to

i
on test functions

�
– � . It is worth

noting, however, that the other considered mutation strategies
can achieve a comparable, or even better, performance after
fine–tuning the value of

i
. Mutation strategies 2, 4 and 6,

Eq. (2), (4) and (6) appear to be the most heavily influenced
from the choice of

i
.

V. CONCLUSION

In this work we investigate how the Differential Evolu-
tion optimization algorithm can be parallelized in a virtual
parallel environment so as to reduce computational time and
improve performance. The parallelization model we employed
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assigns each subpopulation, to a different processor node. The
topology of the proposed parallel model was a ring. The
experimental results obtained suggest that the impact of the
migration constant (the factor that determines the extent of
information exchange among subpopulations) is significant
for the performance of the algorithm. Overall, selecting a
migration factor around I � o appears to be a good first choice,
while setting this factor close to I or to

�
is not advisable.

The impact of this factor on performance varies across the
different mutation strategies employed by the algorithm. The
first and third mutation strategies appear to be more robust
with respect to this factor, whereas the second, fourth, and
sixth mutation strategies are highly sensitive. Fine–tuning
the migration constant can produce significant performance
improvements. In a future correspondence we intend to inves-
tigate alternative topologies, as well as the potential benefits
from employing an evolutionary adapted migration scheme
along with an implementation of an aging concept for the
individuals of the populations [5], [7].
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