COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF COURSE	UNDERGRADUATE			
COURSE CODE	MAT_AM232 SEMESTER OF STUDIES 4 th			
COURSE TITLE	SECOND COURSE IN ORDINARY DIFFERENTIAL EQUATIONS			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		TEACHING HOURS PER WEEK	ECTS CREDITS	
Lectures and Tutorials		4	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialization course			
PREREQUISITE COURSES:	Recommended prerequisite knowledge: CALCULUS II, LINEAR ALGEBRA I, INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS			
TEACHING AND ASSESSMENT LANGUAGE:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP113/			

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning

and Appendix B

• Guidelines for writing Learning Outcomes

By the end of this course, the student will have developed the ability:

- To decide the appropriate solving method for systems of ODEs and especially linear systems of ODEs
- To solve ODEs by using the infinite series method
- To apply the Laplace transform for solving ODEs and/or systems of ODEs
- To examine the form of solutions of boundary value problems
- To solve special types of integral equations by using boundary value problems or Laplace transform
- To model and solve simple problems using systems (mainly linear) of ODEs or/and integral Equations.

A student who has succesfully completed the course will be able to solve ODEs using the infinite series method and/or the Laplace transform and to examine the form of solutions of boundary value problems, to decide the appropriate method for solving systems of ODEs and to solve special types of integral equations.

General Abilities Taking into consideration the general competences that appear below), at which of the following does the course	the degree-holder must acquire (as these appear in the Diploma Supplement and aim?	
Search for, analysis and synthesis of data and	Project planning and management	
information, with the use of the necessary technology	Respect for difference and multiculturalism	
Adapting to new situations	Respect for the natural environment	
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender	
Working independently	issues	
Team work	Criticism and self-criticism	
Working in an international environment	Production of free, creative and inductive thinking	
Working in an interdisciplinary environment	Others	
Production of new research ideas		
Decision making.		

- Autonomous work.
- Teamwork.
- Production of new research ideas.
- Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

Linear systems of ODEs. Solving methods of linear systems of ODEs (elimination method, methods using eigenvalues and eigenvectors of a matrix). Series solutions of linear differential equations. Laplace transform for solving linear ODEs and systems of ODEs. Boundary value problems. Sturm-Liouville problems. Integral equations of Fredholm and Volterra type. Solving Fredholm integral equations whose kernel is a Green function of a homogeneous Sturm Liouville problem and Volterra integral equations with convolution type kernel. Applications of systems of ODEs and integral equations.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc	Lectures (face to face)		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education,	<i>eClass</i> platform of the Department of Mathematics.		
communication with students			
TEACHING ORGANIZATION	Activity	Semester workload	
The manner and methods of teaching are	Lectures	52	
described in detail.			
Lasturas cominara laboratora practico	Solving suggested exercises	65	
fieldwork study and analysis of hibliography	Personal study by the student	30	
tutorials placements clinical practice art			
workshon interactive teaching educational	Final examination	3	
visits, project, essay writing, artistic creativity.		5	
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-	Total number of hours for the Course	150	
directed study according to the principles of the ECTS	(25 hours of work-load per ECTS credit)	150	
STUDENT ASSESSEMNT Description of the evaluation procedure	Assessment Language: Greek Assessment Language for Erasmus students: En	glish	
Language of evaluation, methods of			
evaluation, summative or conclusive, multiple	Assessment methods: Written final course exam including		
choice questionnaires, short-answer questions,	✓ Comprehensive guestions,		
open-ended questions, problem solving,	 Exercises and problem solving. 		
written work, essay/report, oral examination,			
public presentation, laboratory work, clinical			
examination of patient, art interpretation,	Minimum passing grade: 5		
other	Maximum passing grade: 10		
Specifically defined analystics criteria and	Maying hassing Riane. To		
given, and if and where they are accessible to students.			

5. RECOMMENDED LITERATURE

(in Greek)

- Σιαφαρίκας Παναγιώτης. Εφαρμογές των Συνήθων Διαφορικών Εξισώσεων. Τόμος ΙΙ. Εκδόσεις Γκότση, 2015.
- Δάσιος Γεώργιος. Συνήθεις Διαφορικές Εξισώσεις. 3^η Έκδοση, Εκδόσεις Γκότση, 2017.
- Boyce William E. and Richard C. DiPrima. Στοιχειώδεις Διαφορικές Εξισώσεις και Προβλήματα Συνοριακών Τιμών. 2^η Έκδοση, Πανεπιστημιακές Εκδόσεις ΕΜΠ, 2015.
- Σταυρακάκης Νικόλαος. Διαφορικές Εξισώσεις: Συνήθεις και Μερικές. Θεωρία και Εφαρμογές από τη Φύση και τη Ζωή.
 2^η Έκδοση, Εκδόσεις Τσότρας, 2017.

(in English)

- Boyce William E. and Richard C. DiPrima. *Elementary Differential Equations and Boundary Value Problems*. 10th ed., Wiley, 2012.
- Rai Bindhyachal and Choudhury D.P. Ordinary Differential Equations. An Introduction. Alpha Science International Ltd., 2005.

