COURSE OUTLINE

1. GENERAL

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning
and Appendix B
- Guidelines for writing Learning Outcomes

This course aims to provide an advanced understanding of the decision-making process in complicated operational research problems, using the methods of Management Science and particularly, of Linear and Integer Programming. Emphasis is given to understanding and applying each individual concept/method, as well as to their theoretical foundations. By the end of the course, the students should be able to:

- Formulate problems of linear and integer programming.
- Demonstrate advanced knowledge and understanding of the core concepts and theories behind the solution of linear programming problems (reduced cost, dual problem, etc).
- Solve theoretical and problem questions with or without using a relevant software.
- Understand and interpret the results of their projects.
- Present the results of their projects orally as well as in written format and make suggestions to support the process of operational decision making.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional and ethical responsibility and sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking Others...

- Search, analyze and synthesize data and information, using the necessary technologies.
- Decision making.
- Autonomous work.
- Adaptation to new situations.
- Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

Operations Research (OR). The origins of OR. The Nature of OR. Mathematic modeling and its role in.
Introduction to Linear Programming (LP). The LP Model. Assumptions of LP. Two-Variable LP Model. Graphical LP Solution. Computer Solution (LINDO). Linear Programming Applications.

Solving LP Problems: The Simplex Method. The Essence of the Simplex Method. The Algebra of the Simplex Method. The Simplex Method in Tabular Form. The Big M Method. The Two-Phase Method. Sensitivity Analysis. The Theory of Simplex Method.
Duality Theory. Primal-Dual Relationships. Sensitivity and Post-Optimal Analysis.
Integer Linear Programming. Integer Programming Applications. Using Binary Variables. The Branch-and-Bound Technique. The Branch-and-Cut Approach.

TEACHING METHOD Face-to-face, Distance learning, etc	Lectures (face to face)	
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	eClass platform of the Department of Mathematics and University of Patras.	
TEACHING ORGANIZATION The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of nondirected study according to the principles of the ECTS	Activity	Semester workload
	Lectures	52
	Solving suggested exercises	65
	Personal study by the student	30
	Final examination	3
	Total number of hours for the Course (25 hours of work-load per ECTS credit)	150
STUDENT ASSESSEMNT Description of the evaluation procedure	Assessment Language: Greek Assessment Language for Erasmus students: English	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Assessment methods Written final course exam (100\%) including \checkmark Comprehensive questions \checkmark Exercises and problem solving	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students	Minimum passing grade: 5 Maximum passing grade: 10	

5. RECOMMENDED LITERATURE

(in Greek)

 'Екסобף, Екठóбعıৎ Палаไñбף, 2011.
 ¿иницттía, 2003.

(in English)

- Bazaraa Mokhtar S., Jarvis John J. and Sherali Hanif D. Linear Programming and Network Flows. $4^{\text {th }}$ ed., Wiley, 2010.
- Taha Hamdy A. Operations Research. An Introduction. $10^{\text {th }}$ ed., Pearson, 2017.

