COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_PM466 SEMESTER OF STUDIES 8 th				
COURSE TITLE	HARMONIC ANALYSIS				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		TEACHING HOURS PER WEEK		ECTS CREDITS	
Lectures and Tutorials			4		6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Elective course				
PREREQUISITE COURSES:	RECOMMENDED PREREQUISITE KNOWLEDGE: MATHEMATICAL ANALYSIS, COMPLEX ANALYSIS, MEASURE THEORY				
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBPAGE (URL)					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes
- Understanding the definition and basic properties of Fourier coefficients of 2π-periodic, Lebesgue integrable functions on an interval of length 2π.
- Becoming familiar with Féjer's kernel and understanding how it occurs in Fejér's theorem concerning Cesàro summability of Fourier series.
- Understanding the theorem on uniqueness of Fourier series and its consequences.
- Becoming familiar with the definition and basic properties of Dirichlet's kernel and understanding how this kernel occurs in the study of convergence of partial sums of Fourier series and in the proof of negative results concerning the pointwise convergence as well as convergence with respect to the L^1-norm.
- Understanding the concepts and basic results related to the theory of Fourier series in L^2.

Becoming familiar with the application of results and methods of Fourier analysis in proving results such as the isoperimetric inequality and the equidistribution theorem of Weyl.

General Abilities

Taking into consideration the general competences that below), at which of the following does the course aim?	the degree-holder must acquire (as these appear in the Diploma Supplement and appear
Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive thinking
Working in an international environment	Others
Working in an interdisciplinary environment	
Production of new research ideas	
 Independent work 	
 Adaptation to novel situations 	

- Production of novel research ideas
- Promotion of critical and reflective thought

Promoting free, creative, inductive thought

3. COURSE CONTENT

Trigonometric polynomials, Fourier series, Riemann-Lebesgue lemma, Féjer's kernel, Féjer's theorem, uniqueness of Fourier series, Dirichlet kernel, study of partial sums of Fourier series with respect to pointwise convergence as well with respect to the L^1-norm, Parseval's identity, convergence of partial sums of Fourier series with respect to the L^2-norm, isoperimetric inequality, the equidistribution theorem of Weyl, example of continuous nowhere differentiable function.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)				
USE OF INFORMATION AND	PowerPoint slides				
COMMUNICATION TECHNOLOGIES	Support Learning through the <i>eClass</i> platform.				
Use of ICT in teaching, laboratory education, communication with students					
TEACHING ORGANIZATION	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	52			
aescribea în aetali.	Solving the proposed problems	65			
Lectures, seminars, laboratory practice,	Independent Study	30			
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Final Examination	3			
workshop, interactive teaching, educational					
visits, project, essay writing, artistic creativity,					
etc.					
The student's study hours for each learning	Total number of hours for the Course	150			
activity are given as well as the hours of non-	(25 hours of work-load per ECTS credit)	150			
directed study according to the principles of the ECTS					
STUDENT ASSESSEMNT	Assessment Language: Greek				
Description of the evaluation procedure	Assessment Language for Erasmus students: English				
Language of evaluation, methods of	Assessment Lunguage for Liusinus students. Li	191131			
evaluation, summative or conclusive, multiple					
choice questionnaires, short-answer questions, open-ended questions, problem solving,					
written work, essay/report, oral examination,	ser ended questions, problem serving,				
public presentation, laboratory work, clinical	Minimum passing grade: 5				
examination of patient, art interpretation, other					
Specifically-defined evaluation criteria are given, and if and where they are accessible to					
students					

5. **RECOMMENDED LITERATURE (in Greek)**

• Zygmund, A. Trigonometric Series. Πανεπιστημιακές Εκδόσεις Κρήτης, 1995.

Κολουντζάκης, Μ., Παπαχριστόδουλος, Χ. Fourier Analysis. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις, 2015.