COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES		
DEPARTMENT	MATHEMATICS		
LEVEL OF COURSE	UNDERGRADUATE		
COURSE CODE	MAT_AM231 SEMESTER OF STUDIES 4 th		
COURSE TITLE	SYMBOLIC COMPUTATION PACKAGES FOR ADVANCED MATHEMATICS		
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		TEACHING HOURS PER WEEK	ECTS CREDITS
Lectures and and Laboratory Exercises		4	6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).			
COURSE TYPE general background, special background, specialised general knowledge, skills development	Compulsory course for the specialization <i>Applied Mathematics</i> Elective course for each of the other specializations		
PREREQUISITE COURSES:	<u>Recommended prerequisite knowledge:</u> CALCULUS I, II and III, INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, LINEAR ALGEBRA I		
TEACHING AND ASSESSMENT LANGUAGE:	Greek		
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes		
COURSE WEBPAGE (URL)	https://eclass.upatras.gr/courses/MATH965/		

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix B

• Guidelines for writing Learning Outcomes

With this course the student will be able to solve selected topics of Applied Mathematics at the PC Laboratory, interacting in a practical way with the open source, free package, **Sage** (Software for Algebra, Geometry and Experimentation). Particularly, the student:

- Acquires the ability to design the algorithm required to solve a problem.
- Combines the necessary Sage commands / structures to implement the program to solve the problem.

After successful completion of the course, the student will be able to:

- Design the algorithm to solve a clearly formulated problem and implement the corresponding Sage code.
- Learn to use Sage's mathematical libraries.

General Abilities				
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and				
appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and	Project planning and management			
information, with the use of the necessary technology	Respect for difference and multiculturalism			
Adapting to new situations	Respect for the natural environment			
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender			
Working independently	issues			
Team work	Criticism and self-criticism			
Working in an international environment	Production of free, creative and inductive thinking			
Working in an interdisciplinary environment	Others			
Production of new research ideas				

• Search, analyze and synthesize data and information, using the necessary technologies.

- Decision making.
- Autonomous work.
- Promote free, creative and inductive thinking.

3. COURSE CONTENT

Graphs of functions of one and two independent variables. Analysis of functions of one and more variables: limits, derivatives, integrals, Taylor expansions, Fourier series. Vector Calculus: Gradient, divergence and curl of vector fields. Linear algebra: Matrices, linear systems, eigenvectors, eigenvalues, Jordan normal form. Ordinary differential equations (ODEs): classification, solution and graphical representation of ODEs and system of ODEs. Parametric curves and surfaces.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	 ✓ Electronic slides ✓ Support Learning through the <i>eClass</i> platform. 		
TEACHING ORGANIZATION	Activity	Semester workload	
The manner and methods of teaching are	Lectures	40	
described in detail.	Laboratory exercises	25	
Lectures, seminars, laboratory practice,	Solving 7-8 exercises	47	
fieldwork, study and analysis of bibliography,			
tutorials, placements, clinical practice, art workshop, interactive teachina, educational	Study for Final examination	35	
visits, project, essay writing, artistic creativity,	Final Examination	3	
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-	Total number of hours for the Course	150	
directed study according to the principles of the ECTSstandards tou ECTS	(25 hours of work-load per ECTS credit)	150	
STUDENT ASSESSEMNT Description of the evaluation procedure	Assessment Language: Greek		
bescription of the evaluation procedure	Assessment Language for Erasmus students: Eng	glish	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	 Assessment methods ✓ Electronic examination: 90% ✓ Exercises: 10% 		
ourer	Minimum passing grade: 5		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Mαximum passing grade: 10		

5. RECOMMENDED LITERATURE

(in Greek)

- Τσουμπελής Δημήτρης. Ανώτερα Μαθηματικά με Συστήματα Αλγεβρικών Υπολογισμών. Εκδόσεις Εταιρείας Αξιοποίησης και Διαχείρισης Περιουσίας Πανεπιστ. Πατρών, 2014.
- Τραχανάς Στέφανος. Mathematica και Εφαρμογές. Εκδόσεις ΙΤΕ Πανεπιστημιακές Εκδόσεις Κρήτης, 2014.
- Τόγκας Αναστάσιος. Ανώτερα Μαθηματικά με Συστήματα Συμβολικών Υπολογισμών. Σημειώσεις μαθήματος, 2017.

SIT OF