COURSE OUTLINE

1. GENERAL

SCHOOL
DEPARTMENT
LEVEL OF COURSE
COURSE CODE
COURSE TITLE

NATURAL SCIENCES		
MATHEMATICS		
UNDERGRADUATE		
MAT_AM303		
CLASSICAL MECHANICS		

\(\left.$$
\begin{array}{|l|c|c|}\hline \begin{array}{c}\text { INDEPENDENT TEACHING ACTIVITIES } \\
\text { if credits are awarded for separate components of the course, e.g. lectures, } \\
\text { laboratory exercises, etc. If the credits are awarded for the whole of the } \\
\text { course, give the weekly teaching hours and the total credits }\end{array}
$$ \& \begin{array}{c}TEACHING

HOURS

PER WEEK\end{array} \& ECTS CREDITS\end{array}\right]\)| Lectures and Tutorials |
| :---: | methods used are described in detail at (d).

COURSE TYPE
general background,
special background, specialised general knowledge, skills development
PREREQUISITE COURSES:
Background

Recommended prerequisite knowledge: CALCULUS I, II and III, REAL ANALYSIS I, INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, LINEAR ALGEBRA I

TEACHING AND ASSESSMENT
LANGUAGE:
THE COURSE IS OFFERED TO ERASMUS STUDENTS COURSE WEBPAGE (URL)

Greek

Yes
https://eclass.upatras.gr/courses/MATH972/

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning
and Appendix B
- Guidelines for writing Learning Outcomes

In this course the student acquires the ability to use mathematical techniques for the analysis of physical phenomena of fundamental mechanics, oscillations, central force fields and solid bodies.

By the end of this course, the student will have developed skill concerning the use and application of mathematical theoretical models and computational techniques for the interpretation and analysis of physical phenomena related to the dynamics and kinematics of bodies in space, as well the relative classical physical principles that govern them.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

- Search, analyze and synthesize data and information, using the necessary technologies.
- Decision making.
- Working in an interdisciplinary environment.
- Autonomous (independent) work.
- Production of new research ideas.
- Promote free, creative and inductive thinking.

3. COURSE CONTENT

Part one: Fundamental concepts of space-time. Transformations of Galileo in space-time. Motion in space and evolution in space-time. The Galilean principle of relativity (inertial reference systems). The Newton's Determinism (a fundamental equation of Classical Mechanics). Newton's laws and inertial forces. Non-inertial systems, related motions. Momentum, Rotation, Kinetic energy. Material points systems: mass center movement, Köning theorems.

Part two: Force fields. Potential and energy function. Work, Power, Moment and Energy Conservation. Oscillations (Harmonic, free and forced, pendulum). Motion in central force fields. The Law of Global Attraction and the Movement of Celestial Bodies.

Part Three: The state-space of solid bodies. The rotation operator and the Chasles-Euler theorem. The inertia operator and the Sylvester theorem. Ellipsoides of energy and angular momentum. Euler equation and study of motion of solid bodies.

In order to highlight the special educational and didactical aspects of a course, special emphasis is given on the historical evolution and scientific development of the subject as well as on its applications in technology and/or other sciences.
4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc	Lectures (face to face)	
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Supporting learning through the online platform eClass University of Patras.	
TEACHING ORGANIZATION he manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of nondirected study according to the principles of the ECTS	Activity	Semester workload
	Lectures	40
	Tutorials	25
	Solving suggested exercises	35
	Personal study by the student	72
	Final Exam	3
	Total number of hours for the Course (25 hours of work-load per ECTS credit)	175
STUDENT ASSESSEMNT Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Assessment Language: Greek Assessment Language for Erasmus studen Assessment methods Written final course exam (100\%) includin Minimum passing grade: 5 Maximum passing grade: 10	and problem solving.

5. RECOMMENDED LITERATURE

(in Greek)

 Kрウ́tnऽ, 2015.

