## **COURSE OUTLINE**

#### 1. GENERAL

| SCHOOL                                                                                                                                                                                                                                                        | NATURAL SCIENCES                                                                                                                                  |  |                               |              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------|--------------|--|
| DEPARTMENT                                                                                                                                                                                                                                                    | MATHEMATICS                                                                                                                                       |  |                               |              |  |
| LEVEL OF COURSE                                                                                                                                                                                                                                               | UNDERGRADUATE                                                                                                                                     |  |                               |              |  |
| COURSE CODE                                                                                                                                                                                                                                                   | MAT_AM303 SEMESTER OF STUDIES 5 <sup>th</sup>                                                                                                     |  |                               |              |  |
| COURSE TITLE                                                                                                                                                                                                                                                  | CLASSICAL MECHANICS                                                                                                                               |  |                               |              |  |
| INDEPENDENT TEACHING ACTIVITIES<br>if credits are awarded for separate components of the course, e.g. lectures,<br>laboratory exercises, etc. If the credits are awarded for the whole of the<br>course, give the weekly teaching hours and the total credits |                                                                                                                                                   |  | TEACHING<br>HOURS<br>PER WEEK | ECTS CREDITS |  |
| Lectures and Tutorials                                                                                                                                                                                                                                        |                                                                                                                                                   |  | 5                             | 7            |  |
|                                                                                                                                                                                                                                                               |                                                                                                                                                   |  |                               |              |  |
|                                                                                                                                                                                                                                                               |                                                                                                                                                   |  |                               |              |  |
| Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).                                                                                                                                             |                                                                                                                                                   |  |                               |              |  |
| COURSE TYPE<br>general background,<br>special background, specialised general<br>knowledge, skills development                                                                                                                                                | Background                                                                                                                                        |  |                               |              |  |
| PREREQUISITE COURSES:                                                                                                                                                                                                                                         | Recommended prerequisite knowledge: CALCULUS I, II and III, REAL ANALYSIS I,<br>INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, LINEAR ALGEBRA I |  |                               |              |  |
| TEACHING AND ASSESSMENT<br>LANGUAGE:                                                                                                                                                                                                                          | Greek                                                                                                                                             |  |                               |              |  |
| THE COURSE IS OFFERED TO<br>ERASMUS STUDENTS                                                                                                                                                                                                                  | Yes                                                                                                                                               |  |                               |              |  |
| COURSE WEBPAGE (URL)                                                                                                                                                                                                                                          | https://eclass.upatras.gr/courses/MATH972/                                                                                                        |  |                               |              |  |
|                                                                                                                                                                                                                                                               |                                                                                                                                                   |  |                               |              |  |

#### 2. LEARNING OUTCOMES

#### Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning

and Appendix B

• Guidelines for writing Learning Outcomes

In this course the student acquires the ability to use mathematical techniques for the analysis of physical phenomena of fundamental mechanics, oscillations, central force fields and solid bodies.

By the end of this course, the student will have developed skill concerning the use and application of mathematical theoretical models and computational techniques for the interpretation and analysis of physical phenomena related to the dynamics and kinematics of bodies in space, as well the relative classical physical principles that govern them.



| General Abilities                                                                                                                    |                                                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and |                                                                                   |  |  |  |
| appear below), at which of the following does the course aim?                                                                        |                                                                                   |  |  |  |
| Search for, analysis and synthesis of data and                                                                                       | Project planning and management                                                   |  |  |  |
| information, with the use of the necessary technology                                                                                | Respect for difference and multiculturalism                                       |  |  |  |
| Adapting to new situations                                                                                                           | Respect for the natural environment                                               |  |  |  |
| Decision-making                                                                                                                      | Showing social, professional and ethical responsibility and sensitivity to gender |  |  |  |
| Working independently                                                                                                                | issues                                                                            |  |  |  |
| Team work                                                                                                                            | Criticism and self-criticism                                                      |  |  |  |
| Working in an international environment                                                                                              | Production of free, creative and inductive thinking                               |  |  |  |
| Working in an interdisciplinary environment                                                                                          | Others                                                                            |  |  |  |
| Production of new research ideas                                                                                                     |                                                                                   |  |  |  |

- Search, analyze and synthesize data and information, using the necessary technologies.
- Decision making.
- Working in an interdisciplinary environment.
- Autonomous (independent) work.
- Production of new research ideas.
- Promote free, creative and inductive thinking.

## 3. COURSE CONTENT

**Part one:** Fundamental concepts of space-time. Transformations of Galileo in space-time. Motion in space and evolution in space-time. The Galilean principle of relativity (inertial reference systems). The Newton's Determinism (a fundamental equation of Classical Mechanics). Newton's laws and inertial forces. Non-inertial systems, related motions. Momentum, Rotation, Kinetic energy. Material points systems: mass center movement, Köning theorems.

**Part two:** Force fields. Potential and energy function. Work, Power, Moment and Energy Conservation. Oscillations (Harmonic, free and forced, pendulum). Motion in central force fields. The Law of Global Attraction and the Movement of Celestial Bodies.

**Part Three:** The state-space of solid bodies. The rotation operator and the Chasles-Euler theorem. The inertia operator and the Sylvester theorem. Ellipsoides of energy and angular momentum. Euler equation and study of motion of solid bodies.

In order to highlight the special educational and didactical aspects of a course, special emphasis is given on the historical evolution and scientific development of the subject as well as on its applications in technology and/or other sciences.



# 4. TEACHING AND LEARNING METHODS - ASSESSMENT

| <b>TEACHING METHOD</b><br>Face-to-face, Distance learning, etc                                                                       | Lectures (face to face)                                                             |                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|--|--|--|
| USE OF INFORMATION AND<br>COMMUNICATION TECHNOLOGIES<br>Use of ICT in teaching, laboratory education,<br>communication with students | Supporting learning through the online platform <i>eClass</i> University of Patras. |                   |  |  |  |
| TEACHING ORGANIZATION                                                                                                                | Activity                                                                            | Semester workload |  |  |  |
| he manner and methods of teaching are                                                                                                | Lectures                                                                            | 40                |  |  |  |
| describea în aetali.                                                                                                                 | Tutorials                                                                           | 25                |  |  |  |
| Lectures, seminars, laboratory practice,                                                                                             |                                                                                     |                   |  |  |  |
| fieldwork, study and analysis of bibliography,<br>tutorials placements clinical practice art                                         | Solving suggested exercises                                                         | 35                |  |  |  |
| workshop, interactive teaching, educational                                                                                          | Personal study by the student                                                       | 72                |  |  |  |
| visits, project, essay writing, artistic creativity,                                                                                 |                                                                                     |                   |  |  |  |
|                                                                                                                                      | Final Exam                                                                          | 3                 |  |  |  |
| The student's study hours for each learning                                                                                          |                                                                                     |                   |  |  |  |
| directed study according to the principles of                                                                                        | Total number of hours for the Course                                                |                   |  |  |  |
| the ECTS                                                                                                                             | (25 hours of work-load per ECTS credit)                                             | 175               |  |  |  |
|                                                                                                                                      |                                                                                     |                   |  |  |  |
| <b>STUDENT ASSESSEMNT</b><br>Description of the evaluation procedure                                                                 | Assessment Language: Greek<br>Assessment Language for Erasmus students: Eng         | zlish             |  |  |  |
| Language of evaluation, methods of                                                                                                   |                                                                                     | D                 |  |  |  |
| evaluation, summative or conclusive, multiple                                                                                        | Assessment methods                                                                  |                   |  |  |  |
| open-ended questions, problem solving,                                                                                               | Written final course exam (100%) including exercises and problem solving.           |                   |  |  |  |
| written work, essay/report, oral examination,                                                                                        |                                                                                     |                   |  |  |  |
| examination of patient, art interpretation,                                                                                          |                                                                                     |                   |  |  |  |
| other                                                                                                                                | Minimum passing grade: 5                                                            |                   |  |  |  |
| Specifically-defined evaluation criteria are                                                                                         | Maximum passing grade: 10                                                           |                   |  |  |  |
| given, and if and where they are accessible to                                                                                       |                                                                                     |                   |  |  |  |
| students.                                                                                                                            |                                                                                     |                   |  |  |  |

### 5. RECOMMENDED LITERATURE

(in Greek)

- Πνευματικός Σπυρίδων Ν. *Κλασική Μηχανική*. 2<sup>η</sup> Έκδοση, Εκδόσεις Α.Γ. Πνετματικού, 2006.
- Kibble Tom W.B. and Berkshire Frank H. Κλασική Μηχανική. 5<sup>η</sup> Έκδοση, Εκδόσεις ΙΤΕ Πανεπιστημιακές Εκδόσεις Κρήτης, 2015.

LOSIT