COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_AM434 SEMESTER OF STUDIES 7 th				
COURSE TITLE	DYNAMICAL SYSTEMS				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credit			TEACHING HOURS PER WEEK	ECTS CREDITS	
Lectures and Tutorials			4	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Compulsory course for the specialization <i>Applied Mathematics</i> Elective course for each of the other specializations				
PREREQUISITE COURSES:	Recommended prerequisite knowledge: INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, SECOND COURSE IN ORDINARY DIFFERENTIAL EQUATIONS				
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBPAGE (URL)	http://www.math.upatras.gr/~weele/weeleteaching WinterSemester.htm				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix B
- Guidelines for writing Learning Outcomes

In this course the student acquires the essential knowledge and technical skills for analyzing Dynamical Systems, i.e, systems of coupled ordinary differential equations, with emphasis on nonlinear equations. The student becomes acquainted with the analytical tools to correctly interpret the dynamical behavior in phase space, which is one of the central concepts in the field of Dynamical Systems. The course is structured in such a way that the level of complexity is increased gradually: the student is first introduced to Dynamical Systems which have a two-dimensional phase space, and later to systems with three or more dimensions, where the dynamics can become chaotic. The notion of chaos (i.e. sensitive dependence on initial conditions, also called "the butterfly effect") and its ubiquity in the natural world, in economics, in the health sciences and innumerable other applications of practical interest, is one of the major new insights of Mathematics of the past 50 years.

After having successfully followed the course, the student will have acquired a sound working knowledge of Dynamical Systems and will be able to follow the new scientific developments in this active and highly relevant research field.

General Abilities Taking into consideration the general competences that appear below), at which of the following does the course	the degree-holder must acquire (as these appear in the Diploma Supplement and e aim?
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others

- Finding, analyzing and combining facts and information using the most suitable technologies.
- Adapting to new situations.
- Decision making.
- Working and studying autonomously.
- Working in a team.
- Generating new research ideas.
- Stimulating free, creative and constructive thinking.

3. COURSE CONTENT

Autonomous systems of ODEs in the two-dimensional phase plane, equilibrium points and their stability properties, the importance of the nonlinear terms. Population dynamics of two competing species (Lotka-Volterra model) and other applications. Hamiltonian dynamical systems, gradient systems. Local vs. global stability, Lyapunov functions. Periodic solutions, limit cycles and the Poincaré-Bendixson theorem. The Van der Pol oscillator and other applications. The notion of structural stability/instability. Bifurcations of equilibrium points and periodic trajectories: saddle-node, transcritical, pitchfork and Hopf bifurcations. Systems of ODEs with a phase space of three or more dimensions, the appearance of chaotic behavior. The Lorenz attractor and other chaotic ("strange") attractors in phase space.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)				
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	 ✓ Use of information and communication technologies in the classroom, the tutorial classes, and for communication with the students. ✓ Website of the course. ✓ Use of the Department's online platform MyMath. 				
TEACHING ORGANIZATION	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	52			
Lectures, seminars, laboratory practice,	Solving suggested exercises	28			
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Self-study during the semester	40			
visits, project, essay writing, artistic creativity,	Preparation for the final examination	27			
etc.	Final examination	3			
The student's study hours for each learning					
activity are given as well as the hours of non- directed study according to the principles of					
the ECTS	Total number of hours for the Course	150			
	(25 hours of work-load per ECTS credit)				
STUDENT ASSESSMENT Description of the evaluation procedure	Assessment Language: Greek Assessment Language for Erasmus students: Eng	glish			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	 Assessment methods: Written final examination (100%) including: ✓ Theory ✓ Exercises ✓ Applications of Dynamical Systems 				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Minimum passing grade: 5 Maximum passing grade: 10				

5. RECOMMENDED LITERATURE

(in Greek)

- Μπούντης Αναστάσιος. Μη Γραμμικές Συνήθεις Διαφορικές Εξισώσεις. Εκδόσεις Α.Γ. Πνευματικός, 1997.
- Μπούντης Αναστάσιος. Δυναμικά Συστήματα και Χάος. Εκδόσεις Παπασωτηρίου, 1995.

(in English)

- Strogatz Steven H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering. 2nd ed., Westview Press, 2014.
- Arrowsmith David K. and Place C.M. *Dynamical Systems: Differential Equations, Maps and Chaotic Behaviour*. Chapman & Hall, 1992.

