COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES		
DEPARTMENT	MATHEMATICS		
LEVEL OF COURSE	UNDERGRADUATE		
COURSE CODE	MAT_AM468 SEMESTER OF STUDIES 8 th		
COURSE TITLE	INTRODUCTION TO MODERN PHYSICS		
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		TEACHING HOURS PER WEEK	ECTS CREDITS
Lectures and Tutorials		4	6
Add rows if necessary. The organisation of methods used are described in detail at (f teaching and the teaching		
COURSE TYPE general background, special background, specialised general knowledge, skills development	Elective course		
PREREQUISITE COURSES:	Recommended prerequisite knowledge: CALCULUS I – III, REAL ANALYSIS I, INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, SECOND COURSE IN ORDINARY DIFFERENTIAL EQUATIONS		
TEACHING AND ASSESSMENT LANGUAGE:	Greek		
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Νο		
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP228/		

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix B
- Guidelines for writing Learning Outcomes

With this course students will be introduced to Physics, from Classical Mechanics to the modern theories of Special Relativity and Quantum Mechanics.

Upon successful completion of the course, students are familiar with the use and application of mathematical theoretical models in problems of Classical Physics, Hamiltonian Mechanics and Special Theory of Relativity. Thus, they acquire the ability to apply theories of Functional Analysis and Operator Theory, such as Lie groups, SU(2) and SO(3) groups, and Galileo and Poincaré groups, to address related problems in Mathematical Physics.

Finally, the students will know the mathematical foundation of quantum mechanics and will be able to apply theory to solve other physical problems.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations Respect for the natural environment Decision-making Showing social, professional and ethical responsibility and sensitivity to gender Working independently issues Team work Criticism and self-criticism Working in an international environment Production of free, creative and inductive thinking Working in an interdisciplinary environment Others... Production of new research ideas

- Search, analyze and synthesize data and information, using the necessary technologies.
- Production of new research ideas.
- Respect for the natural environment.
- Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

Elements of Special Relativity. Quantum theory of matter. Statistical Physics. The Meaning of Symmetry in Physics – Lie Algebras and Groups. Atomic and nuclear structure. Elementary particles - Fundamental forces.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Support of the course via the online platform <i>eClass</i> of the Department of Mathematics.		
TEACHING ORGANIZATION	Activity	Semester workload	
The manner and methods of teaching are	Lectures	35	
described in detail.	Tutorials	25	
Lectures, seminars, laboratory practice,			
fieldwork, study and analysis of bibliography,	Private study of the student	87	
workshop, interactive teachina, educational			
visits, project, essay writing, artistic creativity,	Final Examinations	3	
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-	Total number of hours for the Course	150	
the ECTS	(25 hours of work-load per ECTS credit)		
STUDENT ASSESSEMNT	Assessment Language: Greek		
	Assessment Language for Erasmus students:		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work essay/report oral examination	Assessment methods: Written final examinations.		
public presentation, laboratory work, clinical	Minimum passing grade: 5		
examination of nation other	Maximum passing grade: 10		
Specifically-defined evaluation criteria are	·		
given, and if and where they are accessible to			
stutents.			

5. RECOMMENDED LITERATURE

(in Greek)

- Serway Raymond A., Moses Clement J. and Moyer Curt A. Σύγχρονη Φυσική. Εκδόσεις ΙΤΕ Πανεπιστημιακές Εκδόσεις Κρήτης, 2009.
- Beiser Arthur. Σύγχρονη Φυσική. Εκδόσεις Gutenberg, 2001.
- Στρέκλας Αντώνης. Εισαγωγή στην Σύγχρονη Φυσική. Σημειώσεις μαθήματος, 2000.

