1. GENERAL

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_DI463	SEMESTER OF STUDIES		7	
COURSE TITLE	HISTORY OF MATHEMATICS				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK		ECTS CREDITS
Lectures and Tutorials			4		6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Elective course				
PREREQUISITE COURSES:					
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	No				
COURSE WEBPAGE (URL)					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course is an introduction to the History of Mathematics with an emphasis on Ancient Greek Mathematics and references to later developments. The aim of the course is, after successfully completing the course, that the students have a clear picture:

- For the beginnings and the long and tedious process of the history of mathematics science.
- For the necessity that historically led to the emergence of the fundamental concepts of definition, theorem and proof, as well as the logical necessity of axiomatization.
- For the content and language of Euclid Elements and the work of Archimedes, in order to potentially constitute a rich material for didactic use during didactic practice.
At the same time, the opening of issues related to the relationship between mathematics and the other sciences emerging at the same time highlights interdisciplinary, while the relationship of mathematics with the philosophical currents of the time aspires to open the horizons for philosophical reflections.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and
information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

- Autonomous work.
- Teamwork.
- Work in an interdisciplinary environment.
- Exercise of criticism and self-criticism.
- Promoting free, creative and inductive thinking.

3. COURSE CONTENT

The pre-scientific empirical mathematics of ancient civilizations. The beginnings of Greek mathematics, the formation of mathematics in axiomatic - productive science. The three famous problems of Greek antiquity. The contribution of Ancient Greek philosophies to the formation of Mathematical Thought.

Mathematics as an axiomatic deductive science. Euclid's axiomatic system. Archimedes and the ancient method of integration. Mathematics and other scientific fields in Greek antiquity (Astronomy - Optics - Acoustics - Statics - Hydrostatics- Kinematic). Ancient formal Logic (Aristotle, Stoics). Mathematics after Archimedes: Apollonius of Perga, Pappus of Alexandria, Heron of Alexandria, Diophantus of Alexandria.
4. TEACHING AND LEARNING METHODS - ASSESSMENT

| TEACHING METHOD |
| ---: | :--- | :--- |
| Face-to-face, Distance learning, etc | Lectures (face to face)

5. RECOMMENDED LITERATURE

(in Greek)

- Basmakova Izabella Grigor'evna. I $\sigma \tau о \rho i \alpha ~ \tau \omega v ~ A \rho \chi \alpha i \omega \omega v ~ E \lambda \lambda \eta v \iota \kappa \omega ́ v ~ M \alpha \vartheta \eta \mu \alpha \tau \iota \kappa \omega ́ v . ~ E к \delta o ́ \sigma \varepsilon ı \varsigma ~ П \alpha \pi \alpha \sigma \omega \tau \eta \rho i o u, ~ 2012$.

 Пvєuиatıкои́, 1981.

