1. GENERAL

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning
and Appendix B
- Guidelines for writing Learning Outcomes

The course generally aims at:

- Cultivating the ability to quickly and correctly understand a mathematical text as well as to correctly formulate the formal mathematical language.
- Cultivating the understanding and correct manipulation of the logical elements of mathematical language as they were expressed in the Greek mathematical language.
- Cultivating the understanding of the logical and syntactical structure of the special phrases of the mathematical language (definition, proposition, proof of theorem, axiom, problem, exercise, etc.) when the vocabulary is non-formal, and cultivation of the ability to use formal language.
- Cultivating the ability to use and control arguments and the ability of logic and linguistic analysis of Greek mathematical texts.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional and ethical responsibility and sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking Others...

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Adaptation to new situations.
- Autonomous work.
- Teamwork.
- Promoting free, creative and inductive thinking.

3. COURSE CONTENT

This course grew out of considerations in Mathematical Logic and in modern Linguistics.
Formal languages. Examples of first-order languages with equality. The evolution of Greek mathematical language, Euclid's version. The structure of modern Greek mathematical language. The logical symbols of natural language. Predicates in natural language, free and bound occurrence of a variable. The taxonomy of mathematical expressions. The Linguistic levels of mathematical language. Logic and linguistic analysis of Greek mathematical texts.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

5. RECOMMENDED LITERATURE

(in Greek)

(in English)

- Partee Barbara H., ter Meulen Alice and Wall Rober E. Mathematical Methods in Linguistics. Kluwer Academic, 1990.
- Exner Robert M. and Rosskopf Myron F. Logic in Elementary Mathematics. McGraw-Hill, 1959.
- Lacombe Daniel. Coures de Logique élémentaire. Polycopié, Université Paris VII, 1978.
- Gamut L. T. F. Logic, Language, and Meaning. The University of Chicago Press, 1991.

