1. GENERAL

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_IC103	SEMESTER OF STUDIES		$2^{\text {nd }}$	
COURSE TITLE	DISCRETE MATHEMATICS				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK		ECTS CREDITS
Lectures and Tutorials			5		7
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Background				
PREREQUISITE COURSES:					
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	No				
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP203/				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning
and Appendix B
- Guidelines for writing Learning Outcomes

With this course a student acquires basic knowledge of the use of typical formulas within the Propositional Logic's framework. He/she becomes able to use truth tables to identify tautologies, contradictions, logical consequences and equivalences. He/she becomes familiar with the syntax of first-order types and learns to construct types that express simple properties. The student learns the use of the pigeonhole principle, of mathematical induction and the principal of inclusion-exclusion in various problems of Discrete Mathematics. He/she becomes able to use the basic formulas of Combinatorics to solve problems involving combinations and permutations with or without repetition. He/she can use generating functions in solving combinatorial problems and linear recursive relations. Acquires good understanding of the basic concepts of Graph Theory (vertex degree, connectivity, cycle, Euler cycle, Hamilton cycle, planarity, trees, coloring) and some basic theorems (Euler, Dirac, Cayley, Kuratowski) and their use in solving theoretical and practical problems. After successfully attending the course, a student has a basic understanding of Propositional Logic, a first encounter of First-order Logic, a first encounter of the basic methods of Combinatorics and their use and an introductory knowledge of the basic concepts of Graph Theory.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

- Adaptation to new situations.
- Work in an interdisciplinary environment.
- Excercise of criticism and self-criticism.
- Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

(i) Logic. The language of propositional logic, alphabet and syntax. Types and tree graphs. Truth assignment and the meaning of the logical connectives. Truth tables. Regular forms. Logical implication. Basic equivalences. Applications. The expressibility of propositional logic. The propositional calculus and formal proofs. The syntax of first-order types and their use in expressing mathematical statements.
(ii) Combinatorics. Counting of discrete structures. The addition and multiplication rule. Permutations and combinations without and with repetition. Examples. The balls in urns paradigm. The principle of inclusion-exclusion. Generating functions and recursive relations.
(iii) Introduction to Graph Theory. Definition and graph types. Connectivity in simple graphs. Subgraphs. Multigraphs. Euler cycle. Euler's theorem. Hamilton cycle. Graph matrices. Isomorphic and homomorphic graphs. Planar graphs. Kuratowski's theorem. Graph coloring. Trees. Binary trees. Directed graphs.

4．TEACHING AND LEARNING METHODS－ASSESSMENT

5．RECOMMENDED LITERATURE

（in Greek）

