COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_IC233 SEMESTER OF STUDIES 6 th				
COURSE TITLE	MATHEMATICAL FOUNDATIONS OF THE THEORY OF COMPUTATION				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK		ECTS CREDITS
Lectures and Tutorials		4		6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Compulsory course for the specialization <i>Informatics and Computational Mathematics</i> Elective course for each of the other specializations				
PREREQUISITE COURSES:	<u>Recommended prerequisite knowledge:</u> INTRODUCTION TO ALGEBRA AND SET THEORY, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ				
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Νο				
COURSE WEBPAGE (URL)	https://eclass.upatras.gr/courses/MATH1061/				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

By successfully attending this course the student will have further developed the following skills:

- To use the fundamental methods of proofs correctly and to recognize which is the proper method of proof for each problem.
- To understand the meaning of the formal deductive systems.
- To apply mathematical induction in order to verify recursive algorithms.
- To use Hoare Logic to prove that the partial and total correctness of algorithms and programs.
- To use relational databases for knowledge acquisition.
- To understand the concept of a formal language and some mechanisms of producing a formal language like the regular expressions and grammars.
- To understand the concept of an automaton and its limitations.
- To study a universal computational model like the Turing machine.
- To realize the existence of non-computable problems.

General Abilities				
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and				
appear below), at which of the following does the course	aim?			
Search for, analysis and synthesis of data and	Project planning and management			
information, with the use of the necessary technology	Respect for difference and multiculturalism			
Adapting to new situations	Respect for the natural environment			
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender			
Working independently	issues			
Team work	Criticism and self-criticism			
Working in an international environment	Production of free, creative and inductive thinking			
Working in an interdisciplinary environment				
Production of new research ideas	Others			

- Work in an interdisciplinary environment.
- Promotion of free, creative and inductive thinking.
- Autonomous work.

1. COURSE CONTENT

Part one: Logic and proof. A review of Logic of Propositions: Alphabet, syntax and semantics. A review of Logic of Predicates: Alphabet, syntax and semantics. Fundamental methods of roofs: Direct proof, Proof by contraposition, Existence Proof (constructive and non- constructive), Indirect proof, Proof by mathematical induction (weak and strong induction). Formal deductive systems: Hilbert-style systems, Semantic tableaux. Recursion and induction. Validation of programs by using Hoare Logic: Partial correctness of code, Total correctness of code. Relations-Relational databases (elementary presentation of Prolog).

Part two: Formal languages and automata. Alphabets and languages. Regular expressions and regular languages. Deterministic and non-deterministic finite automata. The pumping lemma for regular expressions. Context-free grammars and languages. Regular grammars. Grammar simplification. The pumping lemma for context-free languages. Pushdown automata. Turing machines. Computation using a Turing machine. Context sensitive grammars. Computability. Undecidable languages. Recursively enumerable languages. Ta limits of computability. Rice's Theorem.

Led IT

2. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc	Lectures (face to face)				
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	The learning procedure is supported by the <i>eClass</i> platform of University of Patras.				
TEACHING ORGANIZATION	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	52			
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	Study (unsupervised)	95			
tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Final examination	3			
The student's study hours for each learning activity are given as well as the hours of non-					
directed study according to the principles of the ECTS	Total number of hours for the Course (25 hours of work-load per ECTS credit)	150			
STUDENT ASSESSEMNT Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Assessment Language: GreekAssessment Language for Erasmus students:Assessment methods: Written Final Course ExaminationMinimum passing grade: 5Mαximum passing grade: 10				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students					

3. RECOMMENDED LITERATURE

(in Greek)

- Μπουντουρίδης Μωυσής και Ράγγος Όμηρος. Μαθηματικές Θεμελιώσεις της Θεωρίας Υπολογισμού. Σημειώσεις μαθήματος, 2015.
- Sipser Michael. Εισαγωγή στη Θεωρία Υπολογισμού. Εκδόσεις ΙΤΕ Πανεπιστημιακές Εκδόσεις Κρήτης, 2011.
- Lewis Harry R. και Παπαδημητρίου Χρίστος Χ. *Στοιχεία Θεωρίας Υπολογισμού*. Εκδόσεις Κριτική, 2005.

