1. GENERAL

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

By successfully attending this course the student will have further developed the following skills:

- To use the fundamental methods of proofs correctly and to recognize which is the proper method of proof for each problem.
- To understand the meaning of the formal deductive systems.
- To apply mathematical induction in order to verify recursive algorithms.
- To use Hoare Logic to prove that the partial and total correctness of algorithms and programs.
- To use relational databases for knowledge acquisition.
- To understand the concept of a formal language and some mechanisms of producing a formal language like the regular expressions and grammars.
- To understand the concept of an automaton and its limitations.
- To study a universal computational model like the Turing machine.
- To realize the existence of non-computable problems.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

- Work in an interdisciplinary environment.
- Promotion of free, creative and inductive thinking.
- Autonomous work.

1. COURSE CONTENT

Part one: Logic and proof. A review of Logic of Propositions: Alphabet, syntax and semantics. A review of Logic of Predicates: Alphabet, syntax and semantics. Fundamental methods of roofs: Direct proof, Proof by contraposition, Existence Proof (constructive and non- constructive), Indirect proof, Proof by mathematical induction (weak and strong induction). Formal deductive systems: Hilbert-style systems, Semantic tableaux. Recursion and induction. Validation of programs by using Hoare Logic: Partial correctness of code, Total correctness of code. Relations-Relational databases (elementary presentation of Prolog).

Part two: Formal languages and automata. Alphabets and languages. Regular expressions and regular languages. Deterministic and non-deterministic finite automata. The pumping lemma for regular expressions. Context-free grammars and languages. Regular grammars. Grammar simplification. The pumping lemma for context-free languages. Pushdown automata. Turing machines. Computation using a Turing machine. Context sensitive grammars. Computability. Undecidable languages. Recursively enumerable languages. Ta limits of computability. Rice's Theorem.
2. TEACHING AND LEARNING METHODS - ASSESSMENT

3. RECOMMENDED LITERATURE

(in Greek)

- M $\mu \alpha Ө$ и́ α тоя, 2015.

