1. GENERAL

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_IC438	SEMESTE	STUDIES	$8^{\text {th }}$	
COURSE TITLE	ALGORITHMS AND COMPLEXITY				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			$\begin{aligned} & \text { TEACHING } \\ & \text { HOURS } \\ & \text { PER WEEK } \end{aligned}$		ECTS CREDITS
Lectures and Tutorials			4		6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Compulsory course for the specialization Informatics and Computational Mathematics Elective course for each of the other specializations				
PREREQUISITE COURSES:	Recommended prerequisite knowledge: DATA STRUCTURES				
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	No				
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP176/				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

With this course the student learns the basic concepts of efficient computation, of computing resources and algorithms complexity. Acquires basic knowledge in designing and analyzing algorithms. Understands the possibilities and restrictions of computational models and learns about the complexity classes P and NP. Learns the concept of completeness and the use of reductions as a tool in categorizing computational problems. Learns how to prove NP-completeness results and knows some important NP-complete problems.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

- Adaptation to new situations.
- Work in an interdisciplinary environment.
- Excercise of criticism and self-criticism.
- Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

The concept of efficient computation - computing resources - time, space. Algorithms complexity, optimal algorithms. Basic algorithm designing and analyzing techniques. Divide-and-Conquer. Greedy algorithms. Minimum spanning tress, the algorithms of Prim and Kruskal. Undirected graphs: depth-first-search. Cut points and biconnected components. Matching in bipartite graphs. Directed graphs: finding strongly connected components. Depth-first-search. Shortest path: Dijkstra, Bellman-Ford, topological ordering and shortest paths in directed acyclic graphs. Problem complexity. Examples. Computational models. Turing machine. Non-deterministic Turing machine. Universal Turing machine. Complexity classes and general relations among complexity classes. The concepts of reduction (logarithmic space - polynomial time) and completeness. The classes P and NP. NP-completeness. Cook's Theorem. Some NP-complete problems (satisfiability and variants, graph-theoretic problems, integer programming). Strong and weak NP-completeness.
4. TEACHING AND LEARNING METHODS - ASSESSMENT

5. RECOMMENDED LITERATURE

(in Greek)

- Cormen Thomas H., Leiserson Charles E., Rivest Ronald L. and Stein Clifford. Eıб $\alpha \gamma \omega \gamma \eta$ $\sigma \tau o u \varsigma ~ A \lambda y o ́ \rho \imath \vartheta \mu o u \varsigma . ~ E к \delta o ́ \sigma \varepsilon ı \varsigma ~$

