COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES					
DEPARTMENT	MATHEMATICS	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE					
COURSE CODE	MAT_IC438 SEMESTER OF STUDIES 8 th					
COURSE TITLE	ALGORITHMS AND COMPLEXITY					
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK		ECTS CREDITS	
Lectures and Tutorials		4		6		
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).						
COURSE TYPE general background, special background, specialised general knowledge, skills development	Compulsory course for the specialization <i>Informatics and Computational Mathematics</i> Elective course for each of the other specializations					
PREREQUISITE COURSES:	Recommended prerequisite knowledge: DATA STRUCTURES					
TEACHING AND ASSESSMENT LANGUAGE:	Greek					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Νο					
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP176/					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix B
- Guidelines for writing Learning Outcomes

With this course the student learns the basic concepts of efficient computation, of computing resources and algorithms complexity. Acquires basic knowledge in designing and analyzing algorithms. Understands the possibilities and restrictions of computational models and learns about the complexity classes P and NP. Learns the concept of completeness and the use of reductions as a tool in categorizing computational problems. Learns how to prove NP-completeness results and knows some important NP-complete problems.

General Abilities Taking into consideration the general competences that appear below), at which of the following does the course	the degree-holder must acquire (as these appear in the Diploma Supplement and aim?
Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	Others
Production of new research ideas	
Adaptation to new situations.	

- Work in an interdisciplinary environment.
- Excercise of criticism and self-criticism.
- Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

The concept of efficient computation - computing resources - time, space. Algorithms complexity, optimal algorithms. Basic algorithm designing and analyzing techniques. Divide-and-Conquer. Greedy algorithms. Minimum spanning tress, the algorithms of Prim and Kruskal. Undirected graphs: depth-first-search. Cut points and biconnected components. Matching in bipartite graphs. Directed graphs: finding strongly connected components. Depth-first-search. Shortest path: Dijkstra, Bellman-Ford, topological ordering and shortest paths in directed acyclic graphs. Problem complexity. Examples. Computational models. Turing machine. Non-deterministic Turing machine. Universal Turing machine. Complexity classes and general relations among complexity classes. The concepts of reduction (logarithmic space – polynomial time) and completeness. The classes P and NP. NP-completeness. Cook's Theorem. Some NP-complete problems (satisfiability and variants, graph-theoretic problems, integer programming). Strong and weak NP-completeness.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students				
TEACHING ORGANIZATION	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52		
Lectures, seminars, laboratory practice,	Solving exercises	45		
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Hours of private study of the student	50		
visits, project, essay writing, artistic creativity, etc.	Final examination	3		
The student's study hours for each learning				
activity are given as well as the hours of non-				
directed study according to the principles of the ECTS	Total number of hours for the Course (25 hours of work-load per ECTS credit)	150		
STUDENT ASSESSEMNT Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination.	Assessment Language: Greek Assessment Language for Erasmus students: Assessment methods: Written final course exam including: ✓ Comprehensive questions ✓ Exercises and problem solving			
public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students	Minimum passing grade: 5 Mαximum passing grade: 10			

5. RECOMMENDED LITERATURE

(in Greek)

 Cormen Thomas H., Leiserson Charles E., Rivest Ronald L. and Stein Clifford. Εισαγωγή στους Αλγόριθμους. Εκδόσεις ΙΤΕ – Πανεπιστημιακές Εκδόσεις Κρήτης, 2016.

LOSIT