COURSE OUTLINE

1. GENERAL

SCHOOL		NCES				
		NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS					
LEVEL OF COURSE	UNDERGRADUATE					
COURSE CODE	MAT_IC463 SEMESTER OF STUDIES 7 th					
COURSE TITLE	NUMERICAL SOLUTION OF TRANSCENDENTAL EQUATIONS					
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK		ECTS CREDITS	
	Lectures and Laboratories		4		6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).						
COURSE TYPE general background, special background, specialised general knowledge, skills development	Elective course					
PREREQUISITE COURSES:	Recommended prerequisite knowledge: INTRODUCTION TO NUMERICAL ANALYSIS					
TEACHING AND ASSESSMENT LANGUAGE:	Greek					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes					
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATH_CMI103/					
	http://www.math.upatras.gr/~vrahatis/?section=courses					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix B
- Guidelines for writing Learning Outcomes

Upon completing this course, students will be able to select and apply the most appropriate numerical methods to approximate solutions of transcendental equations and systems of transcendental equations as well as they will further develop the following skills:

- Understanding of various numerical methods for solving transcendental equations and systems of transcendental equations.
- Ability to apply these methods to solve mathematical problems for which there do not exist mathematical closedform expressions that can be solved analytically as well as *to* apply these methods to tackle real world problems.
- Ability to distinguish the advantages and disadvantages of various methods in order to choose and apply the most appropriate one for a given problem.
- Ability to use the mathematical computing environment Matlab (and/or the General Public License-GNU Octave) to implement the course's methods and algorithms.

After successfully attending the course, the students will be able to approach systematically and provide approximate solutions to solve mathematical problems for which there do not exist mathematical closed-form expressions that can be solved analytically as well as to tackle real world problems by choosing and applying the most appropriate numerical analysis methods.

General Abilities Taking into consideration the general competences that appear below), at which of the following does the course	the degree-holder must acquire (as these appear in the Diploma Supplement and aim?
Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	Others
Production of new research ideas	

- Search, analyze and synthesize data and information, using the necessary technologies.
- Decision making.
- Autonomous work.
- Working in an interdisciplinary environment.
- Promote free, creative and inductive thinking.

3. COURSE CONTENT

Concepts of the transcendental functions and their applications. Solutions localization and isolation. Topological degree theory. Methods for computing the topological degree. Methods of Stenger and Kearfott. Existence theorems of Kronecker and Picard. Computing the exact number of solutions. Computing all solutions. Existence of fixed points. Banach's theorem. Theorems of Brouwer and Poincaré-Miranda. Computation of fixed points. Knaster-Kuratowski-Mazurkiewicz covering Lemma. Lemma of Scarf-Hansen. Sperner's Lemma. Triangulations. Scarf's method. Computing solutions of nonlinear systems of algebraic and transcendental equations. Methods of Newton, type Newton, generalized secant, Broyden. Nonlinear methods of Successive Overrelaxation (SOR), Gauss-Seidel and Jacobi. Generalized bisection method. Numerical optimization methods of transcendental functions.

<u>Laboratory exercises</u> using the mathematical computing environment Matlab (and/or the General Public License-GNU Octave) to implement the course's methods and algorithms.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc	Face-to-Face Lectures				
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Support of the learning process through the <i>eClass</i> platform. Usage of the mathematical computing environment Matlab (and/or the General Public License-GNU Octave) to implement the course's methods and algorithms.				
TEACHING ORGANIZATION	Activity	Semester workload			
The manner and methods of teaching are	Lectures	26			
described in detail.	Laboratory exercises	26			
Lectures, seminars, laboratory practice,					
fieldwork, study and analysis of bibliography,	Solving suggested exercises	30			
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Personal study by the student	65			
visits, project, essay writing, artistic creativity,					
etc.	Final examination	3			
The student's study hours for each learning					
activity are given as well as the hours of non-					
directed study according to the principles of	Total number of hours for the Course	150			
the ECTS	(25 hours of work-load per ECTS credit)	150			
STUDENT ASSESSEMNT	Assessment Language: Greek				
Description of the evaluation procedure	Assessment Language for Erasmus students: English				
Language of evaluation, methods of	Assessment Language for Liasinus students. Li				
evaluation, summative or conclusive, multiple					
choice questionnaires, short-answer questions, open-ended questions, problem solving,	Assessment methods: Written final examination which includes theory and problems solving.				
written work, essay/report, oral examination,					
public presentation, laboratory work, clinical					
examination of patient, art interpretation, other					
ouiei	Minimum passing grade: 5				
Specifically-defined evaluation criteria are	Maximum passing grade: 10				
given, and if and where they are accessible to students.					

5. RECOMMENDED LITERATURE

(in Greek)

- Βραχάτης Μιχαήλ Ν. Αριθμητική Ανάλυση: Υπερβατικές Εξισώσεις. Εκδόσεις Κλειδάριθμος, 2012.
- Κεσογλίδης Μιχαήλ. Βασικά Κεφάλαια Αριθμητικής Ανάλυσης. Εκδόσεις Ανίκουλα, 2005.

LOSIT