COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_IC464 SEMESTER OF STUDIES 8 th				
COURSE TITLE	INTRODUCTION TO INTERVAL ANALYSIS				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK	ECTS CREDITS	
Lectures and Tutorials			4	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Free Elective c	ourse			
PREREQUISITE COURSES:	Recommended prerequisite knowledge: CALCULUS I, INTRODUCTION TO NUMERICAL ANALYSIS				
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBPAGE (URL)	https://eclass.upatras.gr/courses/MATH918/				

2. LEARNING OUTCOMES

Learning outcomes

Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος.

Συμβουλευτείτε το Παράρτημα Α

- Περιγραφή του Επιπέδου των Μαθησιακών Αποτελεσμάτων για κάθε ένα κύκλο σπουδών σύμφωνα με Πλαίσιο Προσόντων του Ευρωπαϊκού Χώρου Ανώτατης Εκπαίδευσης
- Περιγραφικοί Δείκτες Επιπέδων 6, 7 & 8 του Ευρωπαϊκού Πλαισίου Προσόντων Διά Βίου Μάθησης
- και Παράρτημα Β

• Περιληπτικός Οδηγός συγγραφής Μαθησιακών Αποτελεσμάτων

With this course, students are expected to be able to use Interval Analysis methods (in contrast to basic numerical methods) for the solution of mathematical problems. At the end of this course the student will have further developed the following skills:

- Understanding of interval arithmetic.
- Understanding of the basic interval methods.
- Ability to apply these methods in problem solving.
- Ability to distinguish the differences between basic numerical methods and interval methods of Inteval Analysis.
- Ability to use a library for solving basic subjects of Interval Analysis.

After successfully attending the course, the student will be able to provide approximate solutions to mathematical problems using an appropriate numerical method.

SIT OF

General Abilities				
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and				
appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and	Project planning and management			
information, with the use of the necessary technology	Respect for difference and multiculturalism			
Adapting to new situations	Respect for the natural environment			
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender			
Working independently	issues			
Team work	Criticism and self-criticism			
Working in an international environment	Production of free, creative and inductive thinking			
Working in an interdisciplinary environment	Others			
Production of new research ideas				

- Search, analysis and synthesis, as well as a critical understanding of data and information using appropriate technologies.
- Decision making.
- Autonomous Work.
- Teamwork.
- Working in an interdisciplinary environment.
- Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

A brief history. Arithmetic of computers. Extensions of floating-point arithmetic. Interval numbers and Interval arithmetic. Advantages and disadvantages of Interval arithmetic. Functions of intervals. Interval vectors and matrices. The Fundamental Theorem of Interval Analysis. Solving nonlinear equations using interval methods. Solving linear and nonlinear systems of equations using interval methods. Global optimization using interval methods.

Applications: Usage of appropriate Matlab/Octave library.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	 ✓ Slides ✓ Support Learning through the <i>eClass</i> platform. 			
TEACHING ORGANIZATION	Activity	Semester workload		
The manner and methods of teaching are	Lectures	26		
described in detail.	Tutorials	26		
Lactures cominars laboratory practice				
fieldwork, study and analysis of hiblioaraphy.	Personal study by the student	50		
tutorials, placements, clinical practice, art	Solving suggested exercises	45		
workshop, interactive teaching, educational				
visits, project, essay writing, artistic creativity,	Final examination	3		
etc.				
The student's study hours for each learning				
activity are given as well as the hours of non-	Total number of hours for the Course	450		
directed study according to the principles of	(25 hours of work-load per ECTS credit)	150		
STUDENT ASSESSEMNT Description of the evaluation procedure	Assessment Language: Greek Assessment Language for Erasmus students: Eng	glish		
Language of evaluation, methods of	Assessment methods:			
choice questionnaires, short-answer questions	✓ Written Course Examination and Exercises			
open-ended questions, problem solving,				
written work, essay/report, oral examination,				
public presentation, laboratory work, clinical	Minimum passing grade: 5			
examination of patient, art interpretation,	Maximum passing grade: 10			
other				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students				

5. RECOMMENDED LITERATURE

(in Greek)

• Γράψα Θεοδούλα. Εισαγωγή στην Ανάλυση Διαστημάτων -Interval Analysis-. Εκδόσεις Τζιόλα, 2012.

(in English)

- Moore Ramon E. *Methods and Applications of Interval Analysis*. SIAM, 1979.
- Hansen Eldon and Walster William G. *Global Optimization Using Interval Analysis: Revised And Expanded*. 2nd ed., Marcel Dekker 2004.

