COURSE OUTLINE

(1) GENERAL

SCHOOLS	NATURAL SCIEN	CES			
ACADEMIC UNIT/UNITS	MATHEMATICS				
TITLE OF MASTER'S DEGREE	COMPUTATIONAL AND STATISTICAL DATA ANALYTICS (MCDA)				
LEVEL OF STUDIES	POSTGRADUATE				
COURSE CODE	MCDA211	SEMESTER B			
COURSE TITLE	MACHINE LEARNING				
INDEPENDENT TEACHI if credits are awarded for separate co. lectures, laboratory exercises, etc. If th whole of the course, give the weekly teac	mponents of the cou e credits are awarde	ed for the	WEEKLY TEACHING HOURS	CREDITS	
	Ŭ	Lectures	2	7.5	
	Laboratory exercises		1		
Add rows if necessary. The organisation of teaching and the teaching					
methods used are described in detail at (d	ethods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special backgrou	und			
PREREQUISITE COURSES:	MCDA201				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)	https://eclass.upatras.gr/courses/MATH1084/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning

and Appendix B

• Guidelines for writing Learning Outcomes

With this course, the student will be able to use machine learning methods to solve the real problems of Data Science. At the end of this course the student will further develop the following skills:

- to prepare, clean and visualize data using Python,
- to understand the methods of supervised, deep and active learning,
- to distinguish differences between learning methods in order to be able to choose the most appropriate for the specific problem,
- to apply machine learning methods in real data using Python.

After successfully attending the course, the student will be able to solve real problems using a suitable method of machine learning.

General Competences				
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information,	Project planning and management			
with the use of the necessary technology	Respect for difference and multiculturalism			
Adapting to new situations	Respect for the natural environment			
Decision-making	Showing social, professional and ethical responsibility and			
Working independently	sensitivity to gender issues			
Team work	Criticism and self-criticism			
Working in an international environment	Production of free, creative and inductive thinking			
Working in an interdisciplinary environment				
Production of new research ideas	Others			

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making.
- Working independently.
- Project planning and management.
- Working in an interdisciplinary environment.
- Production of free, creative and inductive thinking.

(3) SYLLABUS

PART A: Theory

 (i) Supervised Learning: Support Vector Machines, Ensemble Methods, Hyper-parameters optimization, Handing Imbalanced Datasets. (ii) Time Series Using Regression Methods: Model trees, Neural Networks.
 (iii) Semi-Supervised Learning: Self-trained models, Active Learning. (iv) Text Classification, Image Classification, Sound Classification. (v) Deep Learning: Convolutional Neural Networks, Recurrent Networks.
 (vi) Reinforcement Learning.

PART B: Laboratory

Python for Data Science, Python libraries: scikit-learn, orange, imbalanced-learn, pandas, statsmodels, h2o, libact, nltk, scikit-image, SpeechRecognition, tensorflow, keras, keras-rl.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Lectures (face to face)			
Face-to-face, Distance learning, etc.	,			
USE OF INFORMATION AND	PowerPoint slides			
COMMUNICATIONS TECHNOLOGY	• Support Learning through the <i>eClass</i> platform.			
Use of ICT in teaching, laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	26		
Lectures, seminars, laboratory practice,	Laboratory	13		
fieldwork, study and analysis of bibliography,	Study (no driven)	100		
tutorials, placements, clinical practice, art	Solving suggested exercises	45		
workshop, interactive teaching, educational				
visits, project, essay writing, artistic creativity, etc.	Final examination	2.5		
	Laboratory examination	1		
The student's study hours for each learning				
activity are given as well as the hours of non- directed study according to the principles of the	Total number of hours for the Course	187.5		
ECTS	(25 hours of work-load per ECTS credit)			
STUDENT PERFORMANCE	Account Longuage, Creak			
EVALUATION	Assessment Language: Greek			
Description of the evaluation procedure	Assessment Language for Erasmus students: English			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice	Assessment methods:			
questionnaires, short-answer questions, open-	Written examination (50%)			
ended questions, problem solving, written work,	 Laboratory examination (25%) 			
essay/report, oral examination, public	 Exercises (25%) 			
presentation, laboratory work, clinical				
examination of patient, art interpretation, other				
Specifically-defined evaluation criteria are given,	Minimum passing grade: 5			
and if and where they are accessible to students.	Maximum passing grade: 10			

(5) ATTACHED BIBLIOGRAPHY

- Chollet, F. (2017). *Deep learning with Python*. Manning Publications Co.
- Raschka, S. and Mirjalili, V. (2017). *Python Machine Learning*. Packt Publishing Ltd.
- Shukla, N. (2017). Machine learning with TensorFlow. O'Reilly Media.

(in Greek)

 Zaki, M.J. and Wagber, M. Jr. (2017). Εξόρυξη και Ανάλυση Δεδομένων: Βασικές Έννοιες και Αλγόριθμοι. Εκδόσεις Κλειδάριθμος ΕΠΕ.