1. GENERAL

2. LEARNING OUTCOMES

```
Learning outcomes
The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the
successful completion of the course are described.
Consult Appendix A
    - Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher
    Education Area
    - Descriptors for Levels 6,7 & 8 of the European Qualifications Framework for Lifelong Learning
    and Appendix B
    - Guidelines for writing Learning Outcomes
```

With this course, students are expected to be able to use the language and techniques of the algebra of sets, the induction method, the divisibility of integers and polynomials and the techniques of arithmetic mod n in various problems.
After the successful completion of the course, students will have been in systematic contact with the algebra of sets, the integers, the rational, the real and the complex numbers, with the most basic properties of integer and polynomial arithmetic as well as with the notions of countability and the existence of uncountable sets.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

- Search, analysis and synthesis, as well as a critical understanding of data and information using appropriate technologies.
- Decision making.
- Working in an interdisciplinary environment.
- Autonomous Work.
- Teamwork.
- Production of new research ideas.
- Promotion of free, creative and inductive thinking in mathematics.

3. COURSE CONTENT

Introduction to Set Theory. Sets, naïve definition, description, subsets, power set. Algebra of sets. Infinite unions and intersections, examples (examples of subsets of the real line). Cartesian product. Binary relations, functions, composition of functions, one-to-one functions, reversible functions, line and inverse image of subset, lines and inverse images of unions and intersections. Equivalence relations, Equivalence classes, set-quotient, partitions, order relations. Countability, countability of NxN , uncountability of real numbers, algebraic and transcendent numbers.
Introduction to Number Theory. The set of natural numbers. Standard and strong induction, well-ordering principle. The Euclidean division, the greatest common divisor, the least common multiple, prime numbers, the fundamental theorem of arithmetic, equivalence relation mod n, equivalence classes and their algebra.
Introduction to the field of Complex Numbers. Complex plane, algebra and modulus of complex numbers, polar form and roots of unity.
Polynomials: Division, factorization, roots of polynomials.

In order to highlight the special educational and didactical aspects of a course, special emphasis is given on the historical evolution and scientific development of the subject as well as on its applications in technology and/or other sciences.
4. TEACHING AND LEARNING METHODS - ASSESSMENT

| TEACHING METHOD |
| :--- | :--- | :--- |
| Face-to-face, Distance learning, etc | Lectures (face to face)

5. RECOMMENDED LITERATURE

(in Greek)

