COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF COURSE	UNDERGRADUATE			
COURSE CODE	MAT_PM103 ${ }^{\text {S }}$ SEMESTE	SEMESTER OF STUDIES	$1^{\text {st }}$	
COURSE TITLE	CALCULUS I			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		TEACHING HOURS PER WEEK		ECTS CREDITS
Lectures and Tutorials		5		8
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Background			
PREREQUISITE COURSES:				
TEACHING AND ASSESSMENT LANGUAGE:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	No			
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP224/ https://eclass.upatras.gr/courses/MATH969/			

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning
and Appendix B
- Guidelines for writing Learning Outcomes
- Ability to understand and prove inequalities that hold for every positive integer.
- Some understanding of the definition of supremum and infimum.
- Ability to understand the definition of supremum and infimum. Ability to calculate supremum and infimum.
- Ability to understand the notions of sequence and series of real numbers. Ability to understand the notion of convergence for sequences and series.
- Ability to understand rigorous proofs concerning the algebra of limits and the convergence of basic sequences and series.
- Ability to calculate limits of sequences of real numbers. Ability to understand and prove whether an easy series of positive numbers converges.
- Ability to understand the rigorous definition of the limit of a function. Ability to calculate limits of functions. Knowledge of basic theorems on continuity and differentiability and their involvement to different problems.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and Project planning and management
information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional and ethical responsibility and sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking
Others..

The introductory course of Real Analysis aims to introduce students to "rigorous proof" and "abstraction" in mathematics. Therefore this course arguably promotes free, creative and inductive thinking.

Moreover, since the rigorous approach is entirely different from what is taught in high school mathematics, this process develops the ability of the student to adjust to new situations.

Finally, understanding the rigorous definitions of this course develops criticism and self-criticism. This is the only way to realize why mathematicians were led to these definitions and what the whole theory aims to achieve.

3. COURSE CONTENT

Positive integers, induction, real numbers, operations, ordering, the concepts of supremum and infimum. Axiom of completeness, n-th root function. Sequences, increasing and bounded sequences, sequences that converge to their supremum. Algebra of limits. Series of numbers, geometric series, absolute convergence, ratio test and n-th root test. Definition of e, exponential and logarithmic function. Limit of a function, continuity of a function, algebra of limits and continuity of functions. Intermediate value theorem, derivatives, algebra of derivatives, geometric interpretation, differential, Rolle's theorem, mean value theorem, monotonicity, extrema, convexity and graph of a function.

In order to highlight the special educational and didactical aspects of a course, special emphasis is given on the historical evolution and scientific development of the subject as well as on its applications in technology and/or other sciences.

5. RECOMMENDED LITERATURE

(in Greek)

 Екסóбгıऽ $\Sigma \cup \mu \mu \varepsilon \tau \rho i ́ \alpha, 1999$.

(in English)

- Spivak Michael. Calculus. $4^{\text {th }}$ ed., Publish or Perish, 2008.
- Rudin Walter. Principles of Mathematical Analysis. $3^{\text {rd }}$ ed., McGraw-Hill Education, 1976.

