COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIE	NCES			
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_PM435 SEMESTER OF STUDIES 7 th				
COURSE TITLE	GEOMETRY				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK		ECTS CREDITS
Lectures and Tutorials		4		6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Elective course	2			
PREREQUISITE COURSES:	Recommended prerequisite knowledge: ANALYTIC GEOMETRY, EUCLIDEAN GEOMETRY AND ITS TEACHING, DIFFERENTIAL GEOMETRY I, GENERAL TOPOLOGY.				
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP213/				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix BGuidelines for writing Learning Outcomes

After completing this course the student will know:

- How is a new geometry introduced and what are the main goals of studying a geometry.
- How to define Euclidean transformations in \mathbb{R}^n .
- Basic elements of Affine Geometry.
- Basic elements of Projective Geometry.
- Basic elements of Global Geometry.
- Basic elements of the Reverse Geometry.
- The basic models of Hyperbolic Geometry.
- How Geometries are Classified.

0 0 1	he degree-holder must acquire (as these appear in the Diploma Supplement and			
appear below), at which of the following does the course a Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others			
Adaptation to new situations.				
Working in an interdisciplinary environment.				
• Autonomous Work.				
• Teamwork.				
• Production of new research ideas.				
Promotion of the free, creative and inductive thinking.				

3. COURSE CONTENT

An axiomatic foundation of a geometry and the definition of geometry by Klein. Subgeometry of a geometry. Invariants of geometry. Isomorphic geometries. Affine Geometry of \mathbb{R}^n . Euclidean Geometry of \mathbb{R}^n . Spherical Geometry. Mobius Transformations and Reverse Geometry. Projective Geometry. Models of Hyperbolic Geometry. Geometry hierarchy. Connection of Euclidean and non-Euclidean geometries through Projective Geometry.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)				
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Support of the course via the online platform <i>eClass</i> of the Department of Mathematics.				
TEACHING ORGANIZATION	Activity	Semester workload			
The manner and methods of teaching are	Lectures	52			
described in detail.	Solving suggested exercises	30			
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Hours of private study	65			
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Final examination	3			
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Total number of hours for the Course (25 hours of work-load per ECTS credit)	150			
STUDENT ASSESSEMNT Description of the evaluation procedure	Assessment Language: Greek Assessment Language for Erasmus students: En	glish			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving,					
written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Minimum passing grade: 5 Mαximum passing grade: 10				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.					

5. RECOMMENDED LITERATURE

(in Greek)

• Ζαφειρίδου Σοφία. Γεωμετρίες. Σημειώσεις μαθήματος, 2017.

(in English)

- Jeremy Gray. Worlds Out of Nothing. (e-book). Springer, 2007.
- Ramírez Galarza Ana Irene and Seade José. Introduction to Classical Geometries. (e-book). Springer, 2007.

