COURSE OUTLINE

1. GENERAL

SCHOOL	NATURAL SCIE	NCES			
SEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_PM465 SEMESTER OF STUDIES 80			80	
COURSE TITLE	COMPLEX ANALYSIS II				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK	ECTS CREDITS	
Lectures, seminars and laboratory work			4	6	
Add rows if necessary. The organisat teaching methods used are described COURSE TYPE general background, special background, specialised general					
knowledge, skills development PREREQUISITE COURSES:	Recommended prerequisite knowledge: COMPLEX ANALYSIS				
TEACHING AND ASSESSMENT LANGUAGE:	Greek.				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Νο				
COURSE WEBPAGE (URL)					

2. LEARNING OUTCOMES

Leraning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix B

Guidelines for writing Learning Outcomes

It is expected from students to:

- 1. Understand properties associated with the mapping of domains under holomorphic functions.
- 2. Get acquainted with conformal mappings in the complex plane and be able to deal with a variety of examples of conformal mappings.
- 3. Be able to understand theoretical proofs of classic theorems such as Rouché 's theorem, Scharz's Lemma, Open Mapping Theorem e.t.c. and to realize the information given by these theorems about specific functions.
- 4. Understand and appreciate deeper aspects of Complex Analysis such as Riemann Mapping Theorem.
- 5. Make a first contact with some special functions.
- 6. Develop communication skills of mathematical concepts, oral and written.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear
below), at which of the following does the course aim?Search for, analysis and synthesis of data and
information, with the use of the necessary technology
Adapting to new situationsProject planning and management
Respect for difference and multiculturalism
Respect for the natural environmentDecision-making
Working independently
Team workProject planning and management
Respect for difference and multiculturalism
Respect for the natural environment

• Search for, analysis and synthesis of data and information, with the use of the necessary technology.

Others...

- Decision-making
- Working independently

Production of new research ideas

• Adaptation into new environment

Working in an international environment

Working in an interdisciplinary environment

- Team work
- Production of new research ideas
- Production of free, creative and inductive thinking

3. COURSE CONTENT

Analytic functions, Cauchy's integral theorem and consequences, harmonic functions, conformal mappings, existence of analytic logarithm on simple connected domains, reflection principle, Infinite Products, approximation theorems representation of holomorphic functions, special functions.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc	Face to face.			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Communications via eclass with the students and use of video.			
TEACHING ORGANIZATION	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52		
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	Solving suggested exercises	30		
tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,	Hours of personal study by the student	65		
etc.	Final examination	3		
The student's study hours for each learning activity are given as well as the hours of non-				
directed study according to the principles of the ECTS	Total number of hours for the Course (25 hours of work-load per ECTS credit)	150 hours (total student work-load)		
STUDENT ASSESSEMNT Description of the evaluation procedure	Assessment Language: Greek Assessment Language for Erasmus students:	-		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Assessment methods Written Final Course Examination (100%) including ✓ Theory, ✓ Exercises.			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students	Minimum passing grade: 5 Maximum passing grade: 10			

5. RECOMMENDED LITERATURE

(in Greek)

- Νεγρεπόντης Στυλιανός. *Θεωρία Μιγαδικών Συναρτήσεων μιας Μεταβλητής*. Εκδόσεις Συμμετρία, 1993.
- Μερκουράκης Σοφοκλής Κ. και Χατζηαφράτης Τηλέμαχος Ε. Εισαγωγή στη Μιγαδική Ανάλυση. Εκδόσεις Συμμετρία, 2005.
- Marsden Jerrold E. and Hoffman Michael J. (μετάφραση: Παπαλουκάς Λουκάς). Βασική Μιγαδική Ανάλυση. Εκδόσεις Συμμετρία, 1994.
- Bak Joseph and Newman Donald (μετάφραση: Αποστόλης Γιαννόπουλος). Μιγαδική Ανάλυση. Εκδόσεις Leader Books 2004.