COURSE OUTLINE

1. GENERAL

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 \& 8 of the European Qualifications Framework for Lifelong Learning
and Appendix B
- Guidelines for writing Learning Outcomes

A primary outcome is that the student will learn to view probability not just as a proportion or a relative frequency but also as a mathematical object (a function) that satisfies certain intuitively appealing but rigorously defined properties (axioms). He or she will further comprehend how many phenomena of uncertain behavior actually obey specific probability laws.

In addition, the student will learn to provide a summary of the behavior of such phenomena, by means of numerical characteristics (such as the mean and the variance).

Upon successful completion of the course, the student should have a clear perception of the notion of a random phenomenon as well as the probability distribution of its possible outcomes and be competent to identify and apply probability models in practice.

```
General Abilities
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and
appear below), at which of the following does the course aim?
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
```

Production of new research ideas
The course is intended to help student acquire the following general abilities:

- Decision making.
- Autonomous work.
- Teamwork.
- Ability to work in an interdisciplinary environment.
- Ability to promote free, productive and inductive thinking.

3. COURSE CONTENT

Basic elements of set theory. Random experiment, sample space, events, classical, frequentistic and axiomatic definition of probability. Basic properties of probability, Poincare's formula and continuity theorem. Elements of combinatorial analysis and probabilistic applications. Conditional probability and stochastic independence. Multiplication rule, total probability theorem and Bayes rule. Univariate discrete and (absolutely) continuous random variables. Distribution function, probability mass function and probability density function. Special discrete and continuous distributions: Binomial, Geometric, Negative Binomial, Poisson, Hypergeometric, Uniform, Normal, Exponential, Gamma, Beta, Cauchy. Expected value, variance, standard deviation, moments and other parameters of random variables.

In order to highlight the special educational and didactical aspects of a course, special emphasis is given on the historical evolution and scientific development of the subject as well as on its applications in technology and/or other sciences.
4. TEACHING AND LEARNING METHODS - ASSESSMENT

5. RECOMMENDED LITERATURE

(in Greek)

- Х $\alpha \rho \alpha \lambda \alpha \mu \pi i \delta \eta \varsigma ~ Х \alpha \rho \alpha ́ \lambda \alpha \mu \pi о \varsigma . ~ Ө \varepsilon \omega \rho i \alpha ~ П \imath \vartheta \alpha v о т \eta ́ t \omega v ~ к \alpha ı ~ Е \varphi \alpha \rho \mu о ү \varepsilon ́ \varsigma . ~ T E Y X O \Sigma ~ 1 . ~ Е к \delta o ́ \sigma \varepsilon ı \varsigma ~ \Sigma u \mu \mu \varepsilon \tau \rho i \alpha, ~ 2000 . ~$
- Poú
(in English)
- Ross Sheldon. A First Course in Probability. 9 ${ }^{\text {th }}$ ed., Pearson, 2013.
- Roussas George G. Introduction to Probability. Academic Press, 2014.
- Hoel Paul, Port Sidney and Stone Charles. Introduction to Probability Theory. Houghton Mifflin, 1972.

