COURSE OUTLINE

1. GENERAL

I. OLINEKAL					
SCHOOL	NATURAL SCIE	NCES			
DEPARTMENT	MATHEMATICS				
LEVEL OF COURSE	UNDERGRADUATE				
COURSE CODE	MAT_ST231 SEMESTER OF STUDIES 4 th				
COURSE TITLE	PROBABILITY II				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK		ECTS CREDITS
	Lectures and Tutorials		4		6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Compulsory course for the specialization <i>Statistics, Probability Theory and Operational Research</i> Elective course for each of the other specializations				
PREREQUISITE COURSES:	Recommended prerequisite knowledge: PROBABILITY I, CALCULUS I and II, REAL ANALYSIS I, DISCRETE MATHEMATICS				
TEACHING AND ASSESSMENT LANGUAGE:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBPAGE (URL)	https://eclass.math.upatras.gr/courses/MATHDEP220				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning
- and Appendix B

• Guidelines for writing Learning Outcomes

Upon succesful completion of the course, the student will have gained understanding of the notion of joint variation and interaction between two or more random variables which coexist in the same random experiment as well as the notion of joint probability distribution of the possible outcomes of such an experiment. He should also be in position to distinguish the probability distribution of each random variable separately from the corresponding distribution given some available information about the other random variables. He should be able to recognize and apply special models of joint probability distributions as well as more complex models which are derived in practice as transformations of known simpler models. Finally, he will learn that many distributions, both unknown and known, can be easily approximated by a special and very important distribution, the normal one.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situationsProject planning and management Respect for difference and multiculturalism Respect for the natural environmentDecision-makingShowing social, professional and ethical responsibility and sensitivity to gender issuesTeam workCriticism and self-criticismWorking in an international environmentProduction of free, creative and inductive thinkingWorking in an interdisciplinary environmentOthersProduction of new research ideasSource				

- Decision making.
- Autonomous work.
- Teamwork.
- Ability to work in an interdisciplinary environment.
- Ability to promote free, productive and inductive thinking.

3. COURSE CONTENT

Joint discrete and continuous probability distributions, marginal distributions. Conditional distributions and independence of random variables. Generating functions and reproductive properties. Transformed random variables, chi-square, t, F distributions. Covariance and correlation coefficient. Special multivariate distributions, multinomial and bivariate normal. Markov's and Tchebychev's inequalities. Limit theorems, Laws of Large Numbers, Central Limit Theorem.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc	Lectures (face to face)				
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Support of the course via the online platform <i>eClass</i> and the discussion forum of the Department of Mathematics				
TEACHING ORGANIZATION	Activity	Semester workload			
The manner and methods of teaching are	Lectures	26			
described in detail.	Tutorials	26			
Lectures, seminars, laboratory practice,					
fieldwork, study and analysis of bibliography,	Solving homework problems	40			
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Personal study	55			
visits, project, essay writing, artistic creativity,					
etc.	Final examination	3			
The student's study hours for each learning					
activity are given as well as the hours of non-					
directed study according to the principles of the ECTS	Total number of hours for the Course	150			
	(25 hours of work-load per ECTS credit)	150			
STUDENT ASSESSEMNT Description of the evaluation procedure	Assessment Language: Greek Assessment Language for Erasmus students: En	glish			
Language of evaluation, methods of		-			
evaluation, summative or conclusive, multiple	Assessment methods: Final written examination (100%) made up of theory				
choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination,	questions and exercises.				
public presentation, laboratory work, clinical					
examination of patient, art interpretation, other	Minimum passing grade: 5 Maximum passing grade: 10				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.					

5. RECOMMENDED LITERATURE

(in Greek)

- Χαραλαμπίδης Χαράλαμπος. Θεωρία Πιθανοτήτων και Εφαρμογές. Τεύχος 2. Εκδόσεις Συμμετρία, 1999.
- Δάρας Τρύφων και Σύψας Παναγιώτης. Πιθανότητες και Στατιστική. Θεωρία & Εφαρμογές. Εκδόσεις Ζήτη, 2010.
- Hoel Paul, Port Sidney and Stone Charles. Εισαγωγή στην Θεωρία Πιθανοτήτων. Εκδόσεις ITE Πανεπιστημιακές Εκδόσεις Κρήτης, 2015.

(in English)

- Ross Sheldon. A First Course in Probability. 9th ed., Pearson, 2013.
- Roussas George G. Introduction to Probability. Academic Press, 2014.
- Hoel Paul, Port Sidney and Stone Charles. Introduction to Probability Theory. Houghton Mifflin, 1972.

