COURSE OUTLINE

1. GENERAL

I. GENERAL						
SCHOOL	NATURAL SCIE	NATURAL SCIENCES				
DEPARTMENT	MATHEMATICS					
LEVEL OF COURSE	UNDERGRADUATE					
COURSE CODE	MAT_ST436 SEMESTER OF STUDIES 7 th					
COURSE TITLE	STOCHASTIC PROCESSES					
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			TEACHING HOURS PER WEEK	ECTS CREDITS		
Lectures and Tutorials		4	6			
Add rows if necessary. The organisation of methods used are described in detail at (d COURSE TYPE general background, special background, specialised general knowledge, skills development PREREQUISITE COURSES:						
TEACHING AND ASSESSMENT LANGUAGE:	Greek					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes					
COURSE WEBPAGE (URL)	https://eclass.upatras.gr/courses/MATH944/					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

• Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning

and Appendix B

- Guidelines for writing Learning Outcomes
- To have a good understanding of the properties of the Poisson process.
- To have insight into Markov chains, Markov processes and birth-and-death processes, and to be able to determine their steady-state distribution.
- To develop aptitude in analysing random walks.
- To get a feeling for the application of stochastic process theory in the analysis and optimization of all kinds of phenomena in industry and society.
- Able to handle a modeling problem of modest size in the field of stochastics.

information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	Others
Production of new research ideas Decision making.	

- Team work.
- Ability to promote free, productive and inductive thinking.

3. COURSE CONTENT

A stochastic process is a collection of random variables. We define and classify stochastic processes. Subsequently we provide extensive treatments of the following stochastic processes: the Poisson process, Markov chains, Markov processes, birth-and-death processes, random walks (classification of states, visits to a fixed state, transient and limiting behavior). We also discuss several applications of stochastic processes. The modeling of various every-day life situations (insurance, queues, biological phenomena) as stochastic process receives special attention.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD Face-to-face, Distance learning, etc.	Lectures (face to face)			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Support of the course via the online platform <i>eClass</i> of University of Patras			
	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures Tutorials	39 26		
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,	Solving homework problems Personal study	45 37		
etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of	Final examination	3		
the ECTS	Total number of hours for the Course (25 hours of work-load per ECTS credit)	150		
STUDENT ASSESSEMNT Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Assessment Language: GreekAssessment Language for Erasmus students: EnglishAssessment methodsFinal exams (100%) including Theory and ExercisesMinimum passing grade: 5Mαximum passing grade: 10			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

5. RECOMMENDED LITERATURE

(in Greek)

- Χρυσαφινού Ουρανία. Εισαγωγή στις Στοχαστικές Ανελίξεις. 2^η Έκδοση, Εκδόσεις Σοφία, 2012.
- Βασιλείου Παναγιώτης Χρήστος. Στοχαστικές Μέθοδοι στις Επιχειρησιακές Έρευνες. Εκδόσεις Ζήτη, 2000.
- Δάρας Τρύφων Ι. και Σύψας Παναγιώτης Θ. Στοχαστικές Ανελίξεις. Εκδόσεις Ζήτη, 2003.
- Φακίνος Δημήτριος. Εισαγωγή στις Πιθανότητες και τις Στοχαστικές Διαδικασίες. Εκδόσεις Συμμετρία, 2011.
- Καλπαζίδου Σοφία. Στοιχεία Θεωρίας Στοχαστικών Ανελίξεων. Εκδόσεις Ζήτη, 1991.
- Κάκουλλος Θεόφιλος Ν. Στοχαστικές Ανελίξεις. Εκδόσεις Συμμετρία, 1995.

(in English)

- Kulkarni Vidyadhar G. Modeling and Analysis of Stochastic Systems. CRC Press, 2010.
- Ross Sheldon M. Introduction to Probability Models, 10th ed. Academic Press, 2009.

