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Abstract

In this work the fundamental problem of the biomagnetic fluid flow in a channel under the influence of

an applied magnetic field is studied. It is assumed that the magnetization M of the fluid is varying linearly

with temperature T and magnetic field intensity H . For the numerical solution of the problem, which is

described by a coupled and non-linear system of PDEs, with their appropriate boundary conditions, the

stream function–vorticity formulation is adopted. The solution of the problem is obtained developing an
efficient numerical technique based on finite differences. This technique assures that in the algebraic system

arising after discretization, the matrix of the unknowns is diagonally dominant. Results concerning the

velocity and temperature field, skin friction and rate of heat transfer indicate that the presence of magnetic

field appreciable influence the flow field. A vortex is arising near the lower plate below of which the

magnetic source is placed. The temperature, as well as the skin friction and the rate of heat transfer are

increasing in the same area.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Biomagnetic fluid dynamics (BFD) is a relatively new area in fluid mechanics investigating the
fluid dynamics of biological fluids in the presence of magnetic field. The applications in bio-
engineering and medicine seem to be numerous and the research work is rapidly growing [1–7].

Mathematical models have been developed in order to examine the flow of a biomagnetic fluid
under the action of an applied magnetic field. The implementation of these models is based on the
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modified Stokes principles and on the assumption that besides the three thermodynamic variables
P , q and T the biomagnetic fluid behavior is also a function of magnetization M [8,9]. Magne-
tization is the measure of how much the magnetic field is affecting the magnetic fluid and generally
is a function of the magnetic field intensity H and the temperature T .

Unlike magnetohydrodynamics (MHD), which deals with conducting fluids, the mathematical
model of BFD ignores the effect of polarization and magnetization and the induced current is
negligibly small. Thus in BFD, unlike MHD, Lorentz force is much smaller in comparison to the
magnetization force. According to the above mentioned mathematical model biofluids are con-
sidered poor conductors and the flow is affected only by the magnetization of the fluid in the
magnetic field.

The derived governing equations for incompressible fluid flow are similar to those derived for
ferrohydrodynamics (FHD) [10–16].

The most characteristic biomagnetic fluid is the blood, which can be considered as a magnetic
fluid because the red blood cells contain the hemoglobin molecule, a form of iron oxides, which is
present at a uniquely high concentration in the mature red blood cells. It is found that the ery-
throcytes orient with their disk plane parallel to the magnetic field [17–20] and also that the blood
possesses the property of diamagnetic material when oxygenated and paramagnetic when deoxy-
genated [21].

So, blood possesses the property of a magnetic material, and under some circumstances, can be
considered as diamagnetic or paramagnetic fluid [8].

In the present study a simplification of this mathematical model of BFD is used to obtain
numerical solution of the differential equations describing the fluid flow (blood) in a rectangular
channel under the action of a magnetic field.

It is assumed that the flow is two-dimensional, laminar, incompressible, and the magnetization
is described by a linear equation involving the magnetic intensity H and temperature T . The two
impermeable plates of the channel are kept at different constant temperature and as far as con-
cerns the magnetic field it is assumed equilibrium flow. The Biofluid considered is blood and as a
simplification Newtonian behavior is assumed.

In order to proceed to the numerical solution the stream function–vorticity formulation is
adopted and the solution of the problem is obtained numerically developing an efficient numerical
technique using finite differences. This technique assures that in the algebraic system arising after
discretization, the matrix of the unknowns is diagonally dominant.

The results concerning the velocity and temperature field, skin friction and rate of heat transfer
presented, showed that the flow is appreciably influenced by the magnetic field. A vortex is arising
and the temperature is increasing near the area where the source is located. These results indicate
that application of a magnetic field, in the flow of a biomagnetic fluid, could be useful for medical
and engineering applications.
2. Mathematical formulation

The viscous, steady, two-dimensional, incompressible, laminar biomagnetic fluid (blood) flow is
considered taking place between two parallel flat plates (channel). The length of the plates is �LL and
the distance between them is �hh, such that �LL=�hh ¼ 10. The flow at the entrance is assumed to be fully



Fig. 1. Flow domain and contours of the magnetic field strength H .
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developed and the upper plate is kept at constant temperature T u, while the lower at T l, such that
T l < T u. The origin of the Cartesian coordinate system is located at the leading edge of the lower
plate and the flow is subjected to a magnetic source, which is placed very close to the lower plate
and below it (see Fig. 1).

Blood is considered as electrically non-conducting biomagnetic fluid [4,8,9] and Newtonian
behavior is assumed as in [22,23]. The rotational forces acting on the erythrocytes when entering
the magnetic field are discarded (equilibrium flow).

The governing equations of the fluid flow, under the action of the applied magnetic field, are
similar to those derived in FHD [4,8,9,13,15]. Hence at the channel flow the dimensional velocity
components of ~qq ¼ ð�uu;�vvÞ the pressure �pp and the temperature T are governed by the mass con-
servation, the fluid momentum equations at the �xx, �yy directions, and the energy equation, which are
given respectively by
o�uu
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The boundary conditions of the problem are
Inflow ð�xx ¼ 0; 06 �yy6 �hhÞ : �uu ¼ �uuð�yyÞ; �vv ¼ 0; T ¼ T ð�yyÞ;
Outflow ð�xx ¼ �LL; 06 �yy6 �hhÞ : oð�RRÞ=o�xx ¼ 0;
Upper plate ð�yy ¼ �hh; 06�xx6 �LLÞ : �uu ¼ 0; �vv ¼ 0; T ¼ T u;
Lower plate ð�yy ¼ 0; 06�xx6 �LLÞ : �uu ¼ 0; �vv ¼ 0; T ¼ T l:

9>>=
>>; ð5Þ
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In the above equations �uuð�yyÞ is a parabolic velocity profile corresponding to fully developed
flow, T ð�yyÞ is a linear profile, �RR stands for T , �uu or �vv, �qq is the biomagnetic fluid density, �ll is the
dynamic viscosity, �ll0 is the magnetic permeability of vacuum, �ccp the specific heat at constant
pressure, �kk the thermal conductivity, T the temperature and the bar above the quantities denotes
that they are dimensional.

The terms �ll0M oH=o�xx and �ll0M oH=o�yy in (2) and (3), respectively, represent the components of
the magnetic force, per unit volume, and depend on the existence of the magnetic gradient.

The term �ll0T
oM
oT

�uu oH
o�xx þ �vv oH

o�yy

� �
of Eq. (4) represents the thermal power per unit volume due to the

magnetocaloric effect.

According to FHD the magnetization M , under the equilibrium assumption, is generally a
function of the magnetic field strength H , temperature T and fluid density �qq [13,15]. In the present
formulation, as well as in that of BFD, the blood is actually considered as electrically non-
conducting magnetic fluid. Thus, for the variation of magnetization M , with the magnetic field
intensity H and temperature T , the following relation, derived experimentally for a magnetic fluid
[24], is considered.
M ¼ KHðT c � T Þ; ð6Þ
where K is a constant and T c is the Curie temperature [24].
For the expression of the magnetic field strength it can be considered that the magnetic source

represents a magnetic wire placed vertically to the �xx–�yy plane at the point ð�aa; �bbÞ. The magnetic field
intensity Hð�xx;�yyÞ of such magnetic wire is given by the expression [15]
Hð�xx; �yyÞ ¼ �cc
2p

1

ð�xx� �aaÞ2 þ ð�yy � �bbÞ2
; ð7Þ
where �cc is the magnetic field strength at the source (of the wire) and ð�aa; �bbÞ is the position where the
source is located. The contours of the magnetic field strength are shown in Fig. 1.
3. Transformation of equations

In order to proceed to the numerical solution of the system (1)–(4) with boundary conditions
(5) and the assumptions (6) and (7), the following non-dimensional variables are introduced
x ¼ �xx
�hh
; y ¼ �yy

�hh
; u ¼ �uu

�uur
; v ¼ �vv

�uur
; ð8Þ

p ¼ �pp
q�uu2r

; H ¼ H

Hr
; T ¼ T u � T

T u � T l

; ð9Þ
where, �uur is the maximum velocity at the entrance and Hr is the magnetic field strength at the point
ða; bÞ ¼ ð2:5; 0Þ, whereas the source is placed at the point ða; bÞ ¼ ð2:5;�0:05Þ. The contours of
the dimensionless magnetic field strength H are shown in Fig. 1.
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In order to eliminate the pressure and reduce the number of equations of the system (1)–(4) the
stream function–vorticity formulation is adopted, by introducing the dimensionless vortic-
ity function J ¼ Jðx; yÞ and the dimensionless stream function W ¼ Wðx; yÞ defined by the ex-
pressions
Jðx; yÞ ¼ ov
ox

� ou
oy

; ð10Þ

u ¼ oW
oy

; v ¼ � oW
ox

: ð11Þ
Thus, Eq. (1) is automatically satisfied and Eqs. (2)–(4) produce, by eliminating the pressure p
from the first two and substituting (11) in (4) and (10), the following system of equations
r2W ¼ �J ; ð12Þ
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where r2 is the two-dimensional Laplacian operator (r2 ¼ ~r � ~r ¼ ðo2=ox2 þ o2=oy2Þ).
The non-dimensional parameters entering now into the problem under consideration are
Re ¼
�hh�qq�uur
�ll

ðReynolds numberÞ; Mn ¼ �ll0H
2

rKðT u � T lÞ
�qq�uu2r

ðMagnetic numberÞ;

e ¼ T u

T u � T l

ðTemperature numberÞ; Pr ¼ �ccp�ll
�kk

ðPrandtl numberÞ;

Ec ¼ �uu2r
�ccpðT u � T lÞ

ðEckert numberÞ:
The new parameter entering into the problems of BFD is the magnetic number Mn defined
above and expresses the ratio of magnetic to the inertia forces.

It is worth mentioning here that when the magnetic number Mn ¼ 0 the problem is a common
hydrodynamic flow in a channel with heat transfer. Also, for a specific Reynolds number
(�uur ¼ const:) increasing Mn is equivalent either increasing the magnetic field strength Hr at the
point (2.5, 0), or the temperature difference between the two plates.
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3.1. Boundary conditions

The system of equations (12)–(14) is of elliptic type and boundary conditions, for the unknown
functions W, J and T , are required. The boundary for the problem under consideration is the one
shown in Fig. 1, e.g. the rectangular OABC with Oð0; 0Þ, Að�LL; 0Þ, Bð�LL; �hhÞ and Cð0; �hhÞ. After the
introduction of the non-dimensional coordinates these coordinates are transformed to (0, 0),
(10, 0), (10, 1) and (0, 1), respectively.

All unknown quantities at the exit of the channel are assumed to be independent on x
(oðRÞ=ox ¼ 0). Thus, the outflow conditions for all quantities are determined from the interior
grid points of the computational domain.

The boundary conditions for W are also easy implemented from (11), since the velocity com-
ponents are known (fully developed flow at the entrance and no slip conditions on the plates). The
value of W at the entrance is Wð0; yÞ ¼ 2y2 � ð4=3Þy3.

The dimensionless temperature T at the plates is also easy calculated from (9) and it is addi-
tionally assumed that in the entrance of the channel is varying linearly and is given by the ex-
pression T ð0; yÞ ¼ 1� y.

However, in order to solve the vorticity transport equation (13) it is also necessary to determine
boundary conditions of the vorticity J and this is not an easy task. It is already mentioned that at
the exit no dependence on the x-direction is taken into account. Also, at the entrance the use of
(10) permits the easy derivation of the corresponding boundary condition for J .

On the contrary, the derivation of boundary conditions of J on the solid surfaces (plates) is
more complicated. Quartapelle and Valz-Gris [25] demonstrated that there is no strictly equiva-
lent local boundary condition available for J . The vorticity is to be computed from the velocity
field, but it cannot be specified at the boundaries before the problem is solved.

So, the solution of the problem under consideration is not as simple as it first appears to be, and
special techniques are needed to utilize the numerical methods. To overcome this difficulty, at each
iteration step, numerical boundary conditions are constructed for the vorticity J , using the stream
function W, as follows.

An arbitrary boundary grid point ði;mÞ is considered, as shown in Fig. 2. The vorticity is related
with the stream function with the relation
Ji;m ¼ � o2W
ox2

�
þ o2W

oy2

�
i;m

:

Fig. 2. Grid points for the calculation of Ji;m at the boundary point ði;mÞ.
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Provided that the boundaries are still (u ¼ v ¼ 0), it is assumed that the Ji;m can be expressed
through the following linear combination of neighboring to ði;mÞ points of W
Ji;m ¼ � o2W
ox2

�
þ o2W

oy2

�
i;m

¼ a1Wi�1;m�1 þ a2Wi;m�1 þ a3Wiþ1;m�1 þ a4Wi;m�2;
where ak, k ¼ 1–4, coefficients to be determined.
Hereafter, the terms of the stream function of the right-hand side are replaced by the corre-

sponding expansions of Taylor series
Wi;m�n ¼ Wi;m � nðDyÞ oW
oy

����
i;m

þ 1

2
n2ðDyÞ2 o

2W
oy2

����
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����
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þ 1

2
n2ðDxÞ2 o

2W
ox2

����
i;m

þ ððDxÞ3Þ:
By the solution of the system resulting from the equation of terms of the same power it turns
out that the vorticity at the boundary point is calculated by the following expression
Ji;m ¼ �ðWiþ1;m�1 � 2Wi;m�1 þWi�1;m�1Þ
ðDxÞ2

� ðWi;m�2 �Wi;m�1Þ
3ðDyÞ2

: ð15Þ
The vorticity boundary conditions just derived enable us to solve (13) provided that the right-
hand side is already known from the previous iteration. However, the determination of W from
(11) depends on the distribution of vorticity within the bounded domain. Thus W and J are
coupled and for the solution of the system (12)–(14) an iterative procedure will employed.
4. Numerical method

For the numerical solution of the system of equations (12)–(14) an efficient technique has been
developed based on a numerical method described in [26] as follows.

Eq. (12) is a Poisson equation and can be solved fast and efficiently by the use of a simple SOR
method. The main effort focused on solving the other two equations of the system, namely (13)
and (14).

The arising difficulty solving Eqs. (13) and (14), appearing in fluid mechanics problems, is the
presence of non-linear terms like
oW
oy

oJ
ox

� oW
ox

oJ
oy
in Eq. (13). These non-linear terms cause the diagonal dominance to be lost in the matrix asso-
ciated with the approximating finite-difference equations, if one of the standard central-difference
numerical schemes is used. Thus, the aim of the numerical method used, is to make the matrices of
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the coefficients of the unknowns diagonally dominant, so as the corresponding equations will be
amenable to solution by iterative methods (i.e. SOR).

For the demonstration of the used numerical technique Eq. (13) is taken into account
r2J ¼ Re
oJ
ox

oW
oy

�
� oJ

oy
oW
ox

�
þMnReH

oH
ox

oT
oy

�
� oH

oy
oT
ox

�
: ð16Þ
In order to avoid the aforementioned difficulty Eq. (16) can be split into two equations, namely
o2J
ox2

� Reu
oJ
ox

¼ G1ðx; yÞ þ Aðx; yÞ; ð17Þ

o2J
oy2

� Rev
oJ
oy

¼ �Aðx; yÞ; ð18Þ
where, Aðx; yÞ is an unknown function and
G1ðx; yÞ ¼ MnReH
oH
ox

oT
oy

�
� oH

oy
oT
ox

�
:

The next step is to consider the local transformation for Eq. (17) for x0 � Dx6 x6 x0 þ Dx and y
equal to y0
Jðx; y0Þ ¼ P ðx; y0Þe½�cðx;y0Þ�; where cðx; y0Þ ¼ �Re
2

Z x

x0

uðx; y0Þdx ð19Þ
and Pðx; y0Þ is an unknown function.
Similarly, the local transformation for y0 � Dy6 y6 y0 þ Dy, for Eq. (18) is considered, this

time, for x equal to x0
Jðx0; yÞ ¼ Sðx0; yÞe½�qðx0;yÞ�; where qðx0; yÞ ¼ �Re
2

Z y

y0

vðx0; yÞdy ð20Þ
and Sðx0; yÞ is an unknown function.
Thus, substitution of (19) to (17) and (20) to (18) gives the following system of equations
o2P
ox2

þ Re
2

ou
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�
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4

�
S ¼ �Aðx0; yÞeqðx0;yÞ: ð22Þ
By descretizing equations the second order derivatives of (21) and (22) with central-difference
approximations at the point ðx0; y0Þ, eliminating Aðx0; y0Þ, between the two new equations and
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substituting P and S by their appropriate expressions (19) and (20) at the corresponding points
around ðx0; y0Þ, it is obtained that
J1ec1 þ J3ec3 þ k2J2eq2 þ k2J4eq4 þ
 

� 2þ ReðDxÞ2

2

ou
ox

����
0

� Re2u20ðDxÞ
2

4
� 2k2

þ ReðDxÞ2

2
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!
J0 ¼ ðDxÞ2G1ðx0; y0Þ þOððDxÞ4Þ þOððDxÞ2ðDyÞ2Þ; ð23Þ
where, Dx and Dy is the Cartesian mesh size at the x- and y-direction, respectively and k ¼ Dx=Dy.
The number of grid points is M , N at the x- and y-direction, respectively. By the subscripts 0, 1, 2,
3 and 4 it is denoted the typical set of grid points ðx0; y0Þ, ðx0 þ Dx; y0Þ, ðx0; y0 þ DyÞ, ðx0 � Dy; y0Þ
and ðx0; y0 � DyÞ, respectively.

However, the matrix of unknowns associated with (23) is not necessarily diagonally dominant,
which is a prerequisite for the convergence of the iterative procedure. Diagonal dominance is
obtained by expanding the exponential terms in Taylor series at the point ðx0; y0Þ and keeping the
sufficient number of terms so that the order of the truncation error is conserved.

So, uðx; yÞ is expanded in Taylor series at the point ðx0; y0Þ in the direction of x increasing, so
that Eq. (19) can be integrated to give cðx; y0Þ in powers of ðx� x0Þ. The c1 and c3 are obtained in
powers of Dx if in this latter equation is set successively x ¼ x0 þ Dx and x ¼ x0 � Dx, respectively.

The values of c1 and c3 are used for the calculation of ec1 and ec3 in the form of Taylor series,
which will be substituted in the first two terms of the left-hand side of Eq. (23). The same pro-
cedure is followed to deduce likewise expressions for the other two terms of the left-hand side
member of Eq. (23). In this way and using the equation of continuity (1), Eq. (16) finally takes the
form
k1J1 þ k2J2 þ k3J3 þ k4J4 þ k0J0 ¼ ðDxÞ2G1ðx0; y0Þ; ð24Þ
where,
k1 ¼ 1þ Re2u20
8

ðDxÞ2 � Reu0
2
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�
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8
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2
ðDyÞ

	
;

k0 ¼ �2� Re2u20ðDxÞ
2

4
� 2k2 � Re2v20ðDxÞ

2

4
;

k3 ¼ 1þ Re2u20
8

ðDxÞ2 þ Reu0
2

Dx; k4 ¼ k2 1

�
þ Re2v20

8
ðDyÞ2 þ Rev0

2
ðDyÞ

	
:

Similarly, for Eqs. (12) and (14) it is obtained that
p1W1 þ p2W2 þ p3W3 þ p4W4 þ p0W0 ¼ �ðDxÞ2J0; ð25Þ
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where,
p1 ¼ 1; p2 ¼ k2; p3 ¼ 1; p4 ¼ k2; p0 ¼ �2� 2k2:

d1T1 þ d2T2 þ d3T3 þ d4T4 þ d0T0 ¼ ðDxÞ2G2ðx0; y0Þ; ð26Þ
where,
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:

The linear systems (24)–(26) are sparse and the matrices associated with them are always di-
agonally dominant since the coefficients of the unknowns satisfy the conditions [27]
XN�M

j¼1
j6¼i

jkijj6 jkiij;
XN�M

j¼1
j6¼i

jmijj6 jmiij;
XN�M

j¼1
j6¼i

jdijj6 jdiij; i ¼ 1; 2; . . . ;N �M :
Having assured that the descretization of each of the equations of the system (12)–(14) leads to
an algebraic system with diagonally dominant matrices it is now possible to proceed to the so-
lution of the aforementioned system, subjected to the boundary conditions described in Section
3.1.

The solution is obtained by using an iterative procedure. An under relaxation technique was
used for (24) and (25) whereas, an SOR was used for (26). The under relaxation parameter was
chosen to be 0.7 and the over relaxation one 1.2.

The steps of the procedure followed are

• Give initial guesses for the interior points of the computational domain and the boundary con-
ditions.

• Calculate a new estimation for W by solving (24) once, considering J known.
• Considering W known construct the boundary conditions for J using (15).
• Calculate a new estimation for J by solving (25) once, considering W, T known.
• Considering now W and J known, calculate a new estimation for T by solving (26) once.
• Compare the new estimation with the old ones. If the criterion of convergence is not satisfied set

the new estimations old and return to the second step.
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The criterion of convergence used is
1

MN

XM
i¼1

XN
j¼1

jF nþ1 � F nj < 10�5;
where, F n is an estimation of an unknown function F , (W, J or T ) at the n iteration.
5. Results and discussion

In order to study the biomagnetic fluid flow, in the rectangular channel, under the influence of
an applied magnetic field, the above described numerical technique was applied to solve the
system of equations (12)–(14), under the appropriate boundary conditions.

For the numerical solution it is necessary to assign values in the dimensionless parameters
entering into the problem under consideration. For this purpose a realistic case is considered in
which the fluid is the blood (�qq ¼ 1050 kgm�3, �ll ¼ 3:2� 10�3 kgm�1 s�1) [28], flowing with
maximum velocity �uur ¼ 3:81� 10�2 m s�1 and the plates are located at distance �hh ¼ 2:0� 10�2 m.
In this case the Reynolds number, Re, is equal to 250.

The new dimensionless parameter appearing in the problem is the magnetic number Mn and it
can written as
Mn ¼ �ll0H
2

rKðT u � T lÞ
�qq�uu2r

¼ �ll0HrKHrðT u � T lÞ
�qq�uu2r

¼ BrMr

�qq�uu2r
; ð27Þ
where Br and Mr are the magnetic induction and the magnetization at the point (2.5, 0), respec-
tively. For magnetic field 8 T, the blood has reached magnetization of 60 A/m [4].

From the definition of the Reynolds number it is also obtained that �uur ¼ �llRe=�hh�qq and substi-
tution of this relation to (27) gives
Mn ¼ MrBr
�hh2�qq

�ll2Re2
: ð28Þ
From (28) it is derived that the corresponding Mn for magnetic field strength 8 T at the point
(2.5, 0) is Mn � 315.

It is also considered that the temperature of the plates to be T u ¼ 43 �C whereas T l ¼ 3:5 �C.
For these values of plate temperatures the temperature number � is equal to 8.

Although the viscosity �ll, the specific heat under constant pressure �ccp and the thermal con-
ductivity �kk of any fluid, and hence of the blood, are temperature dependent, Prandtl number can
be considered constant. Thus, for the temperature range considered in this problem, the value of
�ccp and �kk is equal to 14.65 J kg�1 K�1 and 2.2· 10�3 Jm�1 s�1 K�1, respectively, [29,30] and hence it
can be considered that Pr ¼ 20. For these values of the parameters it is also derived that the
Eckert number Ec ¼ 2:476� 10�6.
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The present results where obtained for Dx ¼ Dy ¼ 0:02, i.e. 38,301 grid points. Calculations
where made also for Dx ¼ Dy ¼ 0:012, i.e. 70,056 grid points and no significant differences where
found.

For the above mentioned values of the dimensionless parameters the obtained results are shown
in Figs. 3–6 concerning the velocity field, the temperature field and the coefficients of skin friction
and rate of heat transfer.

Figs. 3 and 4 show the stream and vorticity function contours, respectively, for the values of the
above mentioned parameters and for magnetic numbers Mn ¼ 315, 215 and 115. It is observed
that a vortex is arising at the area where the magnetic source is located. As the magnetic number
Fig. 3. Stream function contours for Re ¼ 250.

Fig. 4. Vorticity function contours for Re ¼ 250.



Fig. 5. Stream function contours and velocity profiles at various positions for Mn ¼ 315 and Re ¼ 250.
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increases, which means increment of the magnetic field strength at the source, as long as the
temperature difference is fixed, the vortex is extended.



Fig. 6. Contours of the dimensionless temperature T for Mn ¼ 315 and Re ¼ 250.
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It should be remarked that in the absence of the magnetic field (Mn ¼ 0) the stream function as
well as the vorticity function contours are straight lines and the velocity profile u is the same with
the one shown at the entrance of the duct in Fig. 5.

The profiles of the dimensionless velocity component u along specific locations in the channel
are shown in Fig. 5. At the point x ¼ 2:6 the flow is separated from the wall and at x � 3:1, re-
attaches with the lower plate. Finally, the flow at the exit x ¼ 10 is again reverted to fully de-
veloped.

The dimensionless temperature contours for the same values of the magnetic number Mn are
shown in Fig. 6. It is observed an increment in the temperature of the biofluid near the lower plate
where the source is located. For Mn ¼ 315, the variation of dimensional temperature, at different
positions in the channel as well as the corresponding contours, are shown in Fig. 7. The distur-
bance in the flow field due to the magnetic source is transferred very far downstream. As a result,
the profile of the temperature at the exit of the channel differs slightly than that of the entrance.
Calculations were made also for �LL=�hh ¼ 12; 15 and 20 to verify this behavior and the last di-
mensional temperature profile pictured in Fig. 7 is at x ¼ 15. It is noted that in the absence of
magnetic field the contours of temperature are straight, equally spaced, lines.

The most important flow and heat transfer characteristics are the local skin friction coefficient
and the local rate of heat transfer coefficient. These quantities can be defined by the following
relations
Cf ¼
2�ssl
�qq�uu2r

; Nu ¼ �qq�hh
�kkðT u � T lÞ

; ð29Þ
where, �ssl ¼ �llðo�uu=o�yyÞj�yy¼0;�hh is the wall shear stress and the heat flux between the fluid and the plates
is _�qq�qq ¼ ��kkðoT=o�yyÞj�yy¼0;�hh.



Fig. 7. Dimensional temperature contours and profiles profiles at various positions for Mn ¼ 315 and Re ¼ 250.
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By the use of (8), (11) the above mentioned quantities can be written as
Cf ¼
2W00ðx; yÞ

Re

�����
y¼0;1

; Nu ¼ oT
oy

����
y¼0;1

¼ T 0ðx; yÞjy¼0;1; ð30Þ
where Nu is the Nusselt number, W00ðx; yÞjy¼0;1 is the dimensionless wall shear parameter and
T 0ðx; yÞjy¼0;1 is the dimensionless wall heat transfer parameter.

The variation of these mentioned dimensionless parameters, for Mn ¼ 115, 215 and 315, are
shown in Figs. 8–11. The wall shear as well as the heat transfer parameters are more influenced on
the lower plate, below of which the magnetic source is located. It is remarkable that the variation
of each one of these parameters is qualitatively the same as the Mn varies from 115 to 315. The
increment of Mn results to greater variations of these parameters.
Fig. 8. Skin friction coefficient of the lower plate for Re ¼ 250.

Fig. 9. Skin friction coefficient of the upper plate for Re ¼ 250.



Fig. 10. Heat transfer parameter of the lower wall for Re ¼ 250.

Fig. 11. Heat transfer parameter of the upper wall for Re ¼ 250.
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The dimensionless wall shear parameter of the lower wall W00ðx; yÞjy¼0 is pictured in Fig. 8 for
the aforementioned values of the Mn.

The value of the parameter increases rapidly in the region x ¼ 1:5–2:38, where it reaches its
maximum value. Very close to the region where the source is located (x ¼ 2:5), a corresponding
decrement take place and at x ¼ 2:72 this parameter takes its minimum negative value.

Fig. 9 shows the variation of the wall shear parameter of the upper plate W00ðx; yÞjy¼1. This
parameter increases near the area of the magnetic source in a smoother way and it�s sign does not
change as happens with the lower plate where reverse of the flow occurs.

From the Figs. 8 and 9 can be observed that far downstream, x ¼ 10, the wall shear parameter
of both plates, reach its original value x ¼ 0 corresponding to fully developed flow. An another
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important information that can be obtained, is the points where these parameters are take zero
values. This happens only for the lower plate for two points, x ¼ 2:5 for all Mn, and x ¼ 6:27, 5.45
and 4.49 for Mn 315, 215 and 115, respectively. In these points there is no skin friction and this
result may be interesting in the case of creation of fibrinoid.

With the use of the wall shear parameter and the relations (29) and (30) it is possible to cal-
culate the drag Dl and Du acting on the lower and upper plate, respectively. Provided that the
width of the plates is considered unity, the drag is given by the relation
Dl;u ¼
Z �LL

0

�ssljy¼0;�hh d�xx ¼
�qq�hh�uu2r
Re

Z 10

0

W00ðx; yÞjy¼0;1 dx: ð31Þ
Calculation of the above mentioned integrals gives that Du=Dl ¼ 55:85=34:17. Consequently,
the drag acting on the upper plate increases 63.45% more than that of the lower.

Figs. 10 and 11 show the variation of the heat transfer parameter for the lower and upper plate,
respectively. Analogous variation is observed, for this parameter, for both plates, but in this case,
far downstream the value of T 0ðx; 0Þ or T 0ðx; 1Þ do not reach their original values. This happens
because, as already mentioned, the disturbance of the temperature field is extended far downstream.

The rate of heat transfer between a plate and the biofluid, i.e. the thermal energy convected
from a plate to the fluid or reversely, per unit area and per unit time (Jm�2 s�1) is given from the
Fourier law of thermal conductivity
_qqwall ¼ ��kk
oT
o�yy

� �
�yy¼0;�hh

¼ �kk
T u � T l

�hh
oT
oy

� �
y¼0;1

: ð32Þ
For the lower plate and Fig. 10 can be observed that oT=oyjy¼0 < 0 thus _qqwall < 0 and the heat
flows from the fluid to the plate. Similarly, for the upper plate and Fig. 11 obtained that
oT=oyjy¼0 < 0 and _qqwall < 0 and the heat flows from the plate to the biofluid.

From relation (32) is possible to calculate the thermal energy Qu and Ql convected from the
upper plate to the fluid and from the fluid to the lower plate, respectively. Provided that the width
of the plates is unity the convected thermal energy is given by the relation
Qu;l ¼
Z �LL

0

_qqwall d�xx ¼ �kkðT u � T lÞ
Z 10

0

oT
oy

����
y¼0;1

dx: ð33Þ
By calculation of the above mentioned integrals it is obtained that Ql=Qu ¼ 28:56=11:55.
Consequently, the thermal energy convected from the fluid to the lower plate is 147.27% more
than that convected from the upper plate to the fluid. This difference occurs, primarily in the
presence of the magnetic field.
6. Conclusions

The biomagnetic fluid flow in a channel is studied under the influence of an applied magnetic
field. A vortex is arising at the area where the magnetic source is located. This phenomenon is
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extended as the magnetic field strength further increases. The temperature also increases at the
same area. The skin friction coefficient as well as the rate of heat transfer at the walls, especially at
the lower plate, are also increased with the increment of the magnetic field strength. The above
mentioned results indicate that the application of a magnetic field, appreciably influences the flow
of a biomagnetic fluid and should be further studied for possible useful medical and engineering
applications.
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