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ABSTRACT: In this work we explore on-line training of neural networks for interpreting colonoscopy images through
tracking the changing location of an approximate solution of a pattern-based, and, thus, dynamically changing, error
function. We have developed a memory-based adaptation of the learning rate for the on-line Backpropagation (BP) and
we investigate the use of this scheme in an on-line evolution process that applies an on-line BP-seeded Differential
Evolution Strategy to (re-)adapt the neural network to modified environmental conditions. We compare this hybrid
strategy to other standard training methods that have traditionally been used for training neural networks off-line.
Preliminary results in interpreting colonoscopy images and frames of video sequences suggest that networks trained
with this strategy detect malignant regions of interest with high accuracy. Extensive testing in interpreting more
complex regions is necessary to fully investigate the properties, the effect of the heuristic parameters and the
performance of the hybrid learning strategy in this context.

KEYWORDS: Minimally invasive imaging procedures, Backpropagation networks, Medical image interpretation, On-
line learning, Differential Evolution Strategies, Artificial evolution.

INTRODUCTION

The need for more effective methods of early detection of cancer - such as those that computer-assisted medical diagnosis
systems aim to provide is obvious. In technical terms, the problem in automatic image interpretation is to associate sets
of pixels (structures) in an image with the unknown objects that are present in the scene from which the image has been
drawn. The difficulty increases when several objects of different kinds, related by a set of spatial-temporal relations, are
present in the observed scene. In medical practice, endoscopic approaches and other minimally invasive techniques (for
example, computed tomography, ultrasonography, confocal microscopy, computed radiography, or magnetic resonance
imaging) are now permitting visualization of previously inaccessible regions of the body. Their objective is to increase
the expert’s ability in identifying malignant regions and decrease the need for intervention while maintaining the ability
for accurate diagnosis. Furthermore, it may be possible to examine a larger area, studying living tissue in vivo - possibly
at a distance [1] - and, thus, minimise the shortcomings of biopsies, such as a limited number of tissue samples, a delay
in diagnosis, and discomfort for the patient. In diagnostic endoscopy, the medical expert, based on a distributed percept of
local changes, interprets the physical surface properties of the tissue - such as the roughness or the smoothness, the
regularity, and the shape - to detect abnormalities. Adjacent surfaces showing different surface properties are
distinguished on the basis of the texture differences. It is important to note, however, the vast difficulties in physical
attributes of the organs. For example, in colonoscopy, no two colons are alike. Even within the same colon, one section
may have very different characteristics from another. This fact introduces severe limitations in the use of computer-
assisted endoscopy for interpreting colonoscopy images [2]. Given a medical image, the "true" features associated with
the physical surface properties of the tissue are not exactly known to the image-interpretation system developer.
Usually, one or more feature-extraction models [3] are used to provide values for each feature’s parameters. The
findings are then used to infer the correct interpretation. On this same task of interpretation on the basis of local changes
on the properties of the tissue under examination, the performance of human perception is considered outstanding.
Furthermore, medical experts have the ability to either add or remove components from an image to give meaning to



what they see. Medical experts can also adapt to changes to the extent that even a distorted image can be recognized.
Neural network-based methodologies present some human-like qualities, such as learning from experience,
generalisation, and handling uncertainty and ambiguity in distorted or noisy images. Thus, such methods provide human
experts with significant assistance in medical diagnosis [4],[5],[6],[7].

In this work we will focus on neural network-assisted endoscopy (a narrow pipe like structure, an endoscope, is passed
into the patient’s body) for interpreting colonoscopy images. Video endoscopes have small cameras in their tips, when
passed into a body, what the camera observes is displayed on a television monitor (see Figure 1 for some of the frames
of a video sequence). The physician controls the endoscope’s direction using wheels and buttons and the whole
procedure is carried out under variable perceptual conditions (shadings, shadows, lighting condition variations,
reflections etc.).

 

Figure 1: Six of the frames of a video sequence showing a polypoid tumor of the colon.

The use of neural networks for detecting malignant regions in these video sequences encounters several problems due:
to the time varying nature of the process, to changes in the perceptual direction of the physician, and to variations in the
diffused light conditions. In most of these cases, the training set is not able to represent all possible variations of the
environment in which the neural network is to be operated. On-line training and retraining are suggested as possible
alternatives because they allow the network to update its weights during operation by taking into account both the
already stored knowledge and the knowledge extracted from the current data. Of course, the main challenge when
dealing with this approach is to balance the information related to recently acquired data with the information already
embodied in the network [8],[9]. 

In this paper, we explore on-line training and retraining of neural networks for detecting malignant regions in
colonoscopy images though a formulation of the problem that is based on the idea of tracking the moving "optimum" of
a dynamically changing pattern-based error measure. This approach coincides with the way adaptation on the
evolutionary time scale is considered [10], and allows us to explore and expand further research on the tracking
performance of evolution strategies and genetic algorithms [10],[11],[12]. However, the reader should keep in mind that
in this paper we do not seek global minimisers of the error function, but we are interested in developing an on-line
evolution strategy that will converge to an approximation of the optimum solution (the interesting topic of finding
global minimisers in neural networks training is described elsewhere [13]). 

The paper is organised as follows: the next section describes the on-line evolution strategy. Then we present some
experimental results and discuss about the findings.

ON-LINE EVOLUTION STRATEGY

On-line training in neural networks is related to updating the network parameters after the presentation of each training
example, which may be sampled with or without repetition. On-line training may be the appropriate choice for learning
a task either because of the very large (or even redundant) training set, or because of the slowly time-varying nature of
the task. Although batch training seems faster for small-size training sets and networks, on-line training is probably
more efficient for large training sets and networks. It helps escaping local minima and provides a more natural approach
to learning in non-stationary environments. On-line methods seem to be more robust than batch methods as errors,
omissions or redundant data in the training set can be corrected or ejected during the training phase. Additionally,
training data can often be generated easily and in great quantities when the system is in operation, whereas they are
usually scarce and precious before. Lastly, on-line training is necessary in order to learn and track time varying
functions and continuously (re-)adapt in a changing environment. 

Despite the abundance of methods for learning from examples, there are only few that can be used effectively for on-
line learning. For example, the classic batch training algorithms cannot straightforwardly handle nonstationary data.
Even when some of them are used in on-line training there exists the problem of  “catastrophic interference”, in which
training on new examples interferes excessively with previously learned examples leading to saturation and slow
convergence [14]. Below we present an on-line BP-seeded Differential Evolution (DE) strategy for on-line neural
network training. Firstly, we briefly present the on-line BP learning stage of the proposed strategy. We, then, proceed



by describing the on-line DE stage. Note that the description below focuses on the problem of adapting the weights on-
line, assuming that the DE is always activated and does not require the input and desired output data to be known a
priori. Our experiments, reported in the next section, were also conducted under the same assumptions (note, however,
that in practice, whenever the changes of the environment are not considered significant and the performance is
satisfactory, the weights and structure of the network should remain the same).

ON-LINE BACKPROPAGATION LEARNING

On-line BP schemes are usually based on the use of stochastic gradient descent due to the inherent efficiency of this
method in time-varying environments [14],[15],[16],[17],[18]. However, sensitivity to learning parameters is a common
drawback of these schemes [19]. Note that in this context, it is not possible to use advanced optimisation methods, such
as conjugate gradient, variable metric, simulated annealing etc., as these methods rely on a fixed error surface [19]. In
[20], a variant of the on-line BP has been proposed which exhibits improved performance when compared with other
methods of the same type. A key point of the method is the use of a new learning rate adaptation schedule that exploits
gradient related information from the current as well as the two previous pattern presentations:

)(),()(),( 1
1

2
22

1
11

1 �

�

�

�

�

�

�

�������
k

p
k

p
k

p
k

p
kk wEwEwEwE ���� . (1)

In (1), .,.  stands for the usual inner product in n
� , pE is the pattern-based error measure and pE� is the

corresponding gradient vector; �  is the learning rate, and 1� , 2� are the meta-learning rates.  At the start of the learning
procedure, 0�k , the learning rate is set to a small positive value. Then, the weights are updated on-line, for each
pattern p, following the iterative scheme:
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The behaviour of this method in the simulations was characterised by increased speed and a higher possibility of good
performance when compared with the on-line BP schemes proposed by Almeida et al. [15], and the classic on-line BP.
In our experiments, we have found that the above on-line BP scheme is particularly efficient at finding a good initial
approximation of the solution and we use it to initialise the population of the DE strategy.   

DIFFERENTIAL EVOLUTION OF LEARNING

Evolution Strategies (ESs) are adaptive stochastic search methods that mimic the metaphor of natural biological
evolution. The main differences between ESs and Genetic Algorithms lie in that the self-adaptation of the mutation
operator is a key feature of the ESs, and in that GAs prefer smaller mutation probability (rate) [10],[11]. Here we use
the Differential Evolution strategies, which have been designed as stochastic parallel direct search methods that can
handle non-differentiable, non-linear and multimodal objective functions efficiently, and require few easily chosen
control parameters [21]. Experimental results have shown that DE strategies have good convergence properties and
outperform other evolutionary algorithms [21]. To apply DE strategies to neural network training we start with a
specific number (NP) of n-dimensional weight vectors, as initial population, and evolve them over time; NP is fixed
throughout the training process and the weight population is initialised by perturbing the approximate solution provided
by the on-line BP. In this case, the on-line BP seeds the DE, i.e. a preliminary solution is available by the on-line BP, so
the initial population might be generated by adding normally distributed random deviations to the nominal solution.
However, in the experiments reported in the next section we have used a uniform distribution to perturb the
approximated solution provided by on-line BP to test the robustness of our approach to noise.

Let's now give some details about our version of DE strategy. The weight vectors evolve randomly with each pattern
presentation (iteration) through the relation 
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where k
bestw  is the best population member of the previous iteration, 0��  is a real parameter (mutation constant) which

regulates the contribution of the difference between weight vectors, and 
21

, rr ww are weight vectors randomly chosen



from the population with � �NPiirr ,,1,1,,2,1, 21 �� ��� , i.e. 21 , rr are random integers mutually different from the
running index i. Aiming at increasing the diversity of the weight vectors further, a crossover-type operation is
introduced that yields the so-called trial vector, NPiu k

i �,1,1
�

� . This operation works as follows: the mutant weight
vectors ( NPivk

i �,1,1
�

� ) are mixed with the "target" vectors, NPiwk
i �,1,1

�
� . Specifically, we randomly choose a real

number r in the interval [0,1] for each component j, j=1,2,…, n, of the 1�k
iv . This number is compared with ]1,0[��

(crossover constant), and if ��r  then the j-th component of the trial vector 1�k
iu  gets the value of the j-th component of

the mutant vector, 1�k
iv ; otherwise, it gets the value of the j-th component of the target vector, 1�k

iw . The trial vector is
accepted for the next iteration if and only if it reduces the value of the pattern-based error measure; otherwise the old
value, k

iw , is retained. This last operation is called selection and, due to the moving "optimum" nature of the on-line
evolution task, it ensures that the fitness starts steadily decreasing at some iteration. The combined action of the
mutation and crossover operation is responsible for much of the effectiveness of DE search, and allows DE strategies to
act as parallel, noise-tolerant hill-climbing algorithms, which efficiently search the whole space for solutions [21]. 

EXPERIMENTS AND DISCUSSION

In our experiments, the colonoscopy video frames were separated into windows of size 16 by 16 pixels. Then the co-
occurrence matrices algorithm was used to gather information regarding each pixel in an image window. Cooccurrence
matrices represent the spatial distribution and the dependence of the grey levels within a local area. Based on these
matrices, sets of statistical measures are computed for different angles. Four angles were considered, as well as a
predefined distance of one pixel. The following four statistical measures provide high discrimination accuracy and were
used to extract the feature vectors: Energy-Angular Second Moment, Correlation, Inverse Difference Moment, Entropy.
The elements of these 16-dimensional feature vectors are the data that were presented to the network in order to train it
(for a full description see [5]).
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with a success of over 90%. For example, in Figure 2, only 2 networks out of the 1000 trained
, [22], achieved recognition success from 90% to 100%. For the Scaled Conjugate Gradient
nding number is 3 out of 1000, while for the Levenberg-Marquardt (L-M), [24], this number is
f the 1000 networks exhibited classification success between 90% and 100%. The best result
is: 90% for the Rprop, 92.4% for the L-M and 92.6% for the SCG. However, a crucial factor
lgorithm is the average time of the training phase. In our case, average training times were:
 13.056 secs for the L-M; 2.968 secs for the SCG. 

riments, the Rprop algorithm (Rprop seems to be an attractive option for fast batch training)
sic on-line BP using data from another frame of the same video sequence. 300 patterns were
9 for testing. The capability of the trained network (16-11-2 architectures were used) with the
ning appropriate characterisations (normal-cancer) to image regions is shown in Table 1. 
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ses a batch error measure, i.e. it uses the true gradient of the error function as it exploits
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Figure 2: Generalisation results for three batch-training algorithms.



information from all the training patterns. The on-line BP, on the other hand, minimises a pattern-based error measure
and works with an instantaneous approximation of the true gradient because information from only one pattern is used
at each iteration. Therefore, on-line BP can be used for (re-)adapting to modified environment conditions, while Rprop
requires all information about input-output patterns to be known a priori and, thus, fails to work when all the relevant
features of the environment are not explicitly defined in advance. However, the results of the experiments presented so
far make clear that the classical on-line BP needs further improvement in order to train networks for the accurate
detection of malignant regions, or at least with comparatively success to batch training methods. 
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Method Cancer (%) Normal (%) Mean (%)
Rprop 83 96 93
On-line BP 73 93 88

riment, a 16-11-2 architecture has been trained on-line to detect malignant regions in a set of four
ame video sequence. The frames used in the two previous experiments were included in the set. The
ly trained on-line following the iterative scheme (1) for adapting the learning rate with the use of
first frame, and then differential evolution of learning occurs as data from the second frame appear at
line evolution continuously adapts the network as patterns from other frames are presented in random
. In total, 1200 patterns from the four frames of the video sequence were presented to the network
g phase. The network was then tested using 15876 patterns from the four frames (4000 patterns
ver the whole image region of a frame and represent normal as well as malignant regions). The
y of the trained networks in assigning appropriate characterisations to explored image regions is
e 2. 

Method Frame 1 Frame 2 Frame 3 Frame 4
On-line BP 83% 84% 77% 88%
On-line BP seeded DE 93% 92% 84% 90%

Table 2: Average generalisation capability.

eded DE scheme provides generalisation results close to the best results obtained by the batch training
ted in the previous experiments. For example, the best SCG-trained network in the first experiment
nd tested using data from Frame 1) had 92.6% success, and the best Rprop-trained network in the
t (trained off-line and tested using data from Frame 2) had 93% success. With regards to the on-line
results of on-line BP in Table 2 are from networks that were trained and tested using data from only
 frame, the performance of the method in terms of generalisation is not satisfactory. On the other
ained with on-line evolution are able to perform satisfactory in changing conditions, as data from
re presented to the same network. Thus, the on-line evolution trained network exhibits in all the cases
e than the frame-specialised networks.

ning that the proposed training scheme seems to handle well the "catastrophic interference" among
nt frames, although further investigation is necessary to extract useful conclusions. Furthermore, in

riments we gave no emphasis in fine-tuning the heuristic parameters of our scheme. Extensive testing
equences and evaluation in interpreting more complex regions is necessary to fully investigate the

the effect of the heuristic parameters and appreciate the performance of the hybrid learning strategy in
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