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Abstract

In this paper, a new globally convergent modification of the Resilient Propagation-Rprop

algorithm is presented. This new addition to the Rprop family of methods builds on a

mathematical framework for the convergence analysis that ensures that the adaptive local

learning rates of the Rprop’s schedule generate a descent search direction at each iteration.

Simulation results in six problems of the PROBEN1 benchmark collection show that the

globally convergent modification of the Rprop algorithm exhibits improved learning speed,

and compares favorably against the original Rprop and the Improved Rprop, a recently

proposed Rrpop modification.
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1. Introduction

A number of advanced algorithms have been proposed so far in neural networks
learning. Methods such as conjugate gradients [13], the Levenberg–Marquardt
algorithm [6] and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [5] are
considered popular choices for training feedforward neural networks. These
algorithms attempt to use second derivative-related information to accelerate the
learning process [2]. Although, the capacity of modern computers has been improved
considerably the last few years, there are still problems that hamper the use of these
powerful second-order algorithms in some problems. For example, a large number of
weights often makes the direct application of second-order methods impractical.
Moreover, these methods use approximations of the Hessian matrix which some time
during training may become close to singular, or badly scaled, and as a consequence
they might produce inaccurate results. Lastly, it is not certain that the extra
computational cost required by the second-order methods speeds up the minimiza-
tion process for nonconvex functions when far from the minimizer [17].
As a result, gradient descent methods are still the most widely used class of

algorithms for supervised learning of neural networks. The most popular training
algorithm of this category is the batch back-propagation (BP) [22]. It is a first-order
method that minimizes the error function by updating the weights using the steepest
descent method [2]

wkþ1 ¼ wk � ZrEðwkÞ; k ¼ 0; 1; . . . , (1)

where E is the batch error measure defined as the sum of squared differences error
function (SSE) over the entire training set and rEðwkÞ ¼ gðwkÞ is the gradient vector
of E. The parameter Z is a heuristic, called learning rate. Proper learning rate values
help to avoid convergence to a saddle point or a maximum. In order to secure the
convergence of the BP training algorithm and avoid oscillations in a steep direction
of the error surface a small learning rate is chosen ð0oZo1Þ: However, it is well
known that this approach tends to be inefficient.
Adaptive gradient-based algorithms with individual step sizes try to overcome the

inherent difficulty of choosing the right learning rates for each region of the search
space depending on the application [11,12]. This is done by controlling the weight
update of each weight in order to minimize oscillations and at the same time
maximize the length of the step size. One of the best algorithms of this class, in terms
of convergence speed, accuracy and robustness with respect to its learning
parameters, is the Resilient backpropagation (Rprop) algorithm introduced by
Riedmiller and Braun [21].
The effectiveness of Rprop in practical applications has motivated the develop-

ment of several variants aiming at improving the convergence behavior and
effectiveness of the original method. These variants can be roughly categorized
into (i) hybrid learning schemes that equip Rprop with second derivative
related information, such as the QRprop algorithm, which approximates the
second derivative by one-dimensional secant steps, and the Diagonal Estimation

Rprop—DERprop [19], which directly computes the diagonal elements of the Hessian
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matrix; (ii) approaches inspired from global optimization theory that combine
Rprop and annealing strategies, such as the simulated annealing Rprop—SARprop

and the restart mode simulated annealing Rprop—ReSARprop [23]. Recently, the
Improved Rprop—IRprop algorithm [8] has shown improved convergence speed
when compared against existing Rprop variants, as well as the conjugate gradients
and the BFGS training methods.
Relevant literature shows that Rprop-based learning schemes exhibit fast

convergence in empirical evaluations, but usually require introducing or even fine
tuning additional heuristics. For example, annealing schedules require heuristics for
the acceptance probability and the visiting distribution, while second derivative
methods employ heuristics in the various approximations of the second derivatives.
Moreover, literature shows a lack of theoretical results underpinning the
development of Rprop modifications, particularly in the case of hybrid schemes.
This is not surprising as heuristics make it difficult to guarantee convergence to a
local minimizer of the error function when adaptive learning rates for each weight
are used in the calculation weight updates [8,12,19,21].
This paper proposes a new Rprop-based learning scheme and presents a

theoretical justification for its development. In the next section, the Rprop algorithm
is described and the basic ideas behind the recently proposed IRprop are reviewed.
Next, the new algorithm and the corresponding theoretical result are presented.
Then, results on the experimental evaluation of the algorithm as well as comparisons
with the original Rprop and the IRprop are reported. The paper ends with short
discussion and concluding remarks.
2. The Rprop and the improved-Rprop algorithms

The Rprop algorithm employs a sign-based scheme to update the weights in order
to eliminate harmful influences of the derivatives’ magnitude on the weight updates,
i.e. the direction of the update along each weight direction only depends on the sign
of the corresponding derivative. This approach is considered eminently suitable for
applications where the gradient is numerically estimated or the error is noisy [8]; it is
easy to implement it in hardware and is not susceptible to numerical problems [18].
The size of the update step along a weight direction is exclusively determined by a
weight-specific ‘‘update-value’’

Dwk
ij ¼

�Dk
ij if

qEðwkÞ

qwij

40;

þDk
ij if

qEðwkÞ

qwij

o0;

0 otherwise;

8>>>>>><
>>>>>>:

where qEðwkÞ=qwij denotes the partial derivative of the batch error with respect
to wij at the kth iteration. The second step of Rprop learning is to determine the
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new update-values

Dk
ij ¼

ZþDk
ij if

qEðwk�1Þ

qwij

qEðwkÞ

qwij

40;

Z�Dk
ij if

qEðwk�1Þ

qwij

qEðwkÞ

qwij

o0;

Dk�1
ij otherwise;

8>>>>>><
>>>>>>:

where 0oZ�o1oZþ:
Thus, every time the partial derivative of the corresponding weight wij

changes its sign between two consecutive iterations, which is considered an
indication that the last update was too large and the algorithm has jumped over a
local minimum, the update-value Dk

ij is decreased by the factor Z�: To enforce
returning to the region of the local minimum, wij is not updated at this iteration
and qEðwkÞ=qwij ¼ 0: If the derivative retains its sign, the update value is
slightly increased in order to accelerate convergence in shallow regions of the error
surface.
Rprop’s assumption that a change of sign of the partial derivative implies a jump

over a local minimum along the direction of the weight wij does not take into account
whether the weight update has caused an increase or decrease of the batch error.
Note that a change of sign of the partial derivative could also imply a jump over a
local maximum. Also the Rprop strategy of slightly increasing the update value when
the derivatives retain their signs may accelerate convergence in shallow regions when
the derivatives are negative but may be inefficient when the two derivatives are
positive. In the case of positive derivatives, large weight updates may lead the weight
trajectory far away from the minimum or in regions with higher error function
values. These types of problems are treated empirically by employing two heuristic
parameters Dmax and Dmin; which act as constraining conditions on the size of the
update steps.
The total number of parameters in Rprop is five [21]: (i) the increase factor is set to

Zþ ¼ 1:2; (ii) the decrease factor is set to Z� ¼ 0:5; (iii) the initial update-value is set
to D0 ¼ 0:1; (iv) the maximum step, which is used in order to prevent the weights
from becoming too large, is Dmax ¼ 50; (v) the minimum step, which is used to avoid
too small weight changes, is Dmin ¼ 10�6:
Recently, the improved Rprop—IRprop algorithm [8], which applies a backtracking

strategy (i.e. it decides whether to take back a step along a weight direction or not by
means of a heuristic), has been proposed. The idea of this Rprop modification is that
weight updates that cause changes to the signs of the corresponding partial
derivatives should be reverted only in case of error increase. Thus, this training
scheme combines the local information, i.e. the sign of the partial derivative of the
error with respect to a weight like Rprop, with more global information, i.e. the error
value at each iteration, in order to decide for each weight individually whether or not
to revert an update step [8].
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3. New learning rates adaptation strategy for Rprop

In our approach, Rprop’s convergence to a local minimizer is treated with
principles from unconstrained minimization theory. At this point, it is important to
clarify that in our context, the term global convergence is used in the same sense as in
Dennis and Schnabel [4], where the authors use it ‘‘to denote a method that is
designed to converge to a local minimizer of a nonlinear function, from almost any

starting point’’ [4, p. 5]. Dennis and Schnabel also note that ‘‘it might be appropriate
to call such methods local or locally convergent, but these descriptions are already
reserved by tradition for another usage’’. Moreover, Nocedal [17, p. 200], defines a
globally convergent algorithm as an algorithm with iterates that converge from a
remote starting point. Thus, in this context, global convergence is totally different
from global optimization [23].
Our approach builds on the following assumptions from the unconstrained

minimization theory: (i) f : D � Rn ! R is the function to be minimized and f is
bounded below in Rn; (ii) f is continuously differentiable in a neighborhood N
of the level set L ¼ fx : f ðxÞpf ðx0Þg; (iii) the gradient of f denoted by g is
Lipschitz continuous on Rn that is for any two points x and y 2 Rn; g satisfies
Lipschitz condition kgðxÞ � gðyÞkpLkx � yk; 8x; y;2 N; where L40 denotes the
Lipschitz constant, and x0 is the starting point of the following iterative scheme

xkþ1 ¼ xk þ tkdk; k ¼ 0; 1; . . . . (2)

Convergence of the general iterative scheme (2), in which dk is the search direction
and tk40 is a step length, requires that the adopted search direction dk satisfies
condition gðxkÞ

>dko0; which guarantees that dk is a descent direction of f ðxÞ at xk:
The step length in (2) can be defined by means of a number of rules, such as Armijo’s
rule [4,25], Goldstein’s rule [4], or Wolfe’s rule [27,28], and guarantees the
convergence in certain cases. For example, when the step length is obtained through
Wolfe’s rule [27,28]

f ðxk þ tkdk
Þ � f ðxkÞps1tkgðxkÞ

>dk, (3)

gðxk þ tkdk
Þ
>dk

Xs2gðxkÞ
>dk, (4)

where gðxÞ is the gradient of f at x, and 0os1os2o1; then a theorem by Wolfe
[27,28] is used to obtain convergence results. Moreover, Wolfe’s Theorem [4,17]
suggests that if the cosine of the angle between the search direction dk and �gðxkÞ is
positive, then limk!1 gðxkÞ ¼ 0; which means that the sequence of gradients
converges to zero. For an iterative scheme (2), limk!1 gðxkÞ ¼ 0 is the best type of
global convergence result that can be obtained (see [17] for a detailed discussion).
Evidently, no guarantee is provided that (2) will converge to a global minimizer, x�;
but only that it possesses the global convergence property [4,17] to a local minimizer.
In batch training, E is bounded from below, since EðwÞX0: For a given training set

and network architecture, if w� exists such that Eðw�Þ ¼ 0; then w� is a global
minimizer; otherwise, w with the smallest EðwÞ value is considered a global
minimizer. Also, when using smooth enough activations (the derivatives of at least
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order p are available and continuous), such as the well-known hyperbolic tangent,
the logistic activation function, etc., the error E is also smooth enough.

Theorem 1. Suppose that assumptions (i)–(iii) are fulfilled, then for any w0 2 Rn and

any sequence fwkg1k¼0 generated by the Rprop scheme

wkþ1 ¼ wk � tk diagfZk
1 ; . . . ; Z

k
i ; . . . ; Z

k
ng signðgðw

kÞÞ; k ¼ 0; 1; . . . , (5)

where signðgðwkÞÞ denotes the column vector of the signs of the components of gðwkÞ ¼

ðg1ðw
kÞ; g2ðw

kÞ; . . . ; gnðw
kÞÞ; tk40 satisfying Wolfe’s conditions, Zk

mðm ¼

1; 2; . . . ; i � 1; i þ 1; . . . ; n) are small positive real numbers generated by Rprop’s

learning rates schedule:

if ðgmðw
k�1Þ � gmðw

kÞ40Þ then Zk
m ¼ minðZk�1

m � Zþ;DmaxÞ, (6)

if ðgmðw
k�1Þ � gmðw

kÞo0Þ then Zk
m ¼ maxðZk�1

m � Z�;DminÞ, (7)

if ðgmðw
k�1Þ � gmðw

kÞ ¼ 0Þ then Zk
m ¼ Zk�1

m , (8)

where 0oZ�o1oZþ; Dmax is the learning rate upper bound, Dmin is the learning rate

lower bound and

Zk
i ¼ �

Pn
j¼1
jai

Zk
j gjðw

kÞ þ d

giðw
kÞ

; 0od51; giðw
kÞa0, (9)

it holds that limk!1 gðwkÞ ¼ 0:

Proof. Evidently, E is bounded below on Rn: The sequence fwkg1k¼0 generated by the
iterative scheme (5) follows the direction

dk
¼ �diagfZk

1 ; . . . ; Z
k
i ; . . . ; Z

k
ng signðgðw

kÞÞ,

which is a descent direction if Zk
m; m ¼ 1; 2; . . . ; i � 1; i þ 1; . . . ; n are positive real

numbers derived from Relations (6)–(8), and Zk
i is given by Relation (9), since

gðwkÞ
>dko0: Following the proof of [26, Theorem 6], since dk is a descent direction

and E is continuously differentiable and bounded below along the radius fwk þ

tdk
j t40g; then there always exist tk satisfying (3)–(4) [4,17]. Moreover, Wolfe’s

Theorem [4,17] suggests that if the cosine of the angle between the descent direction
dk and the �gðwkÞ is positive then limk!1 gðwkÞ ¼ 0: In our case, indeed cos yk ¼

ð�gðwkÞ
>dk

Þ=ðkgðwkÞkkdk
kÞ40: Thus, the theorem is proved. &

The modified Rprop, named GRprop, is implemented through relations (5)–(9). It
is worth mentioning that relation (9) can be applied cyclically over the local learning
rates, or randomly. In some cases, it may be better to select the ith coordinate with
the absolute smallest no zero giðw

kÞ value, as this may result in a larger Zk
i value.

Another choice, which has been used in all experiments reported in this paper, is to
replace each time the smallest learning rate value that yields from the Rprop’s
schedule with an Zk

i value calculated from relation (9).
The role of d in relation (9) is to alleviate problems with limited precision that may

occur in simulations, and should take a small value proportional to the square root
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of the relative machine precision. In our tests, we set d ¼ 10�6 in an attempt to test
the convergence accuracy of the proposed strategy. Also tk ¼ 1 for all k allows the
minimization step along the resultant search direction to be explicitly defined by the
values of the local learning rates. The length of the minimization step can be regulated
through tk tuning to satisfy (3)–(4). Checking (4) at each iteration requires additional
gradient evaluations; thus, in practice (4) can be enforced simply by placing the lower
bound on the acceptable values of the learning rates [12, p. 1772], i.e. Dmin:
4. Empirical study

A simple problem is used first to visualize the behavior of the GRprop and
compare it with the original method. It is a single node with two weights and logistic
activation function. Fig. 1 (top row) shows that under the same initial weights and
heuristic values, [21], GRprop locates the feasible minimum at the center of the
contour plot successfully (Fig. 1, left), while Rprop oscillates around the
neighborhood of the minimizer (Fig. 1, right). Fig. 1 (second row) shows how
GRprop locates the minimizer successfully, whilst Rprop’s trajectory leads to a point
with error value higher than the minimizer.
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Fig. 1. Weight trajectories of GRprop (left) and Rprop (right).
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Next, we evaluate the performance of the new method in six benchmarks and
compare it with the original Rprop [21] and the IRprop [8]. We have used well-
studied problems from the UCI Repository of Machine Learning Databases [14], as
well as problems studied extensively by other researchers in an attempt to reduce as
much as possible biases introduced by the size of the weights space. We decided not
to enhance the algorithms tested with add-on techniques for improving the
classification success in the testing phase (i.e. generalization ability of the trained
neural network) as this would require introducing, and fine tuning or optimizing
additional heuristics depending on the learning task.
Below, we report results from 100 independent trials for six neural network

classification problems, namely cancer1, diabetes1, thyroid1, genes2, Escherichia coli,
yeast. These 100 random weight initializations are the same for all the learning
algorithms. In all cases, we have used networks with sigmoid hidden and output
nodes, and adopted the notation I–H–O to denote a network architecture with I
inputs, H hidden layer nodes and O outputs nodes.
The data sets for the cancer1, diabetes1, thyroid1, and genes2 problems were used

as supplied on the PROBEN1 website. PROBEN1 provides explicit instructions for
creating training and testing sets and choosing network architectures for many
problems [20]. The data sets for the E. coli and yeast problems were used as supplied
on the UCI repository and the sets for training and testing were created following
guidelines published by Horton [7]. There are no standard neural architectures for
these two problems so we have done our own preliminary experiments as will be
described in the problem subsections.
In all experiments, the parameters have been set as follows: Zþ ¼ 1:2; Z� ¼ 0:5;

D0ij ¼ Z0 ¼ 0:1; Dmax ¼ 50 [21]. Finally, we have set d ¼ 10�6 in an attempt to test the
convergence accuracy of the proposed strategy and also tk ¼ 1 for all k.

4.1. The genes2 problem

The first benchmark is known as the genes problem. It is a binary problem. The
data set consists of 1588 patterns. We used a 120-4-2-3 nodes network, and the
testing and training data were created as suggested in PROBEN1 [20]. The error goal
was set at 10�5 in an attempt to explore the effectiveness of the algorithms in
reaching minimizers with high degree of accuracy.
Table 1

Comparison of algorithms performance in the genes problem for the runs which converged

Genes

Algorithm Epochs Time Generalization Convergence

Rprop 2590 38:6� 20:3 99.1 97

IRprop 2574 37:7� 19:9 99.1 97

GRprop 2384 36:8� 15:3 100 100
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Table 1 shows the performance of each algorithm in terms of average number of
epochs (Epochs), average training time (time, in seconds) to reach the error goal �
the corresponding value of standard deviation, average generalization (general-
ization, percentage of correctly classified test patterns) and convergence success out
of the 100 runs (convergence, percentage). For example, GRprop-trained networks
always generalize slightly better than other networks: GRprop achieved 100%
average generalization in the 100 runs which converged, while Rprop and IRprop
achieved on average 99.1% generalization in the 97 runs that they converged. Fig. 2
(left side), shows how GRprop converges to a feasible solution ðEo10�5Þ; while
Rprop to a minimizer with higher error value.
Table 2 presents comparative results in terms of training speed (in seconds) and

generalization for the 100 runs. Table 2 highlights the number of runs for which an
algorithm is better than the other methods. It also shows the average training time
and the corresponding standard deviation for each algorithm calculated over the 100
runs; it is clear that the Rprop and IRprop’s values show an increase compared with
the corresponding values of Table 1 since all runs count. The GRprop outperforms
Rprop and IRprop in 53 and 59 times, respectively, while Rprop is faster than
GRprop and IRprop in 47 and 45 runs.
Finally, this table shows how many times an algorithm of the first column

generalizes better than the other algorithms: the GRprop achieves better general-
ization than Rprop and IRprop 3 times, while IRprop has equal or lower
generalization than Rprop and GRprop.

4.2. The thyroid problem

The second task is to decide whether the patient’s thyroid has over function,
normal function, or under function. We have used the thyroid1 dataset (3600
patterns), a network with 21-4-3 nodes, and the error goal was set at 0.0036, as
suggested in [23].
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Fig. 2. GRprop and Rprop learning curves: genes (left) and thyroid (right).
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Table 2

Number of times, out of 100 runs, each algorithm performs better than the other methods in the genes

problem with respect to training speed and generalization

Genes Times faster algorithm Times better generalization

Algorithm Rprop IRprop GRprop Time Rprop IRprop GRprop

Rprop — 45 47 41:9� 27:4 — 0 0

IRprop 55 — 41 41:3� 27:1 0 — 0

GRprop 53 59 — 36:8� 15:3 3 3 —

Table 3

Comparison of algorithms performance in the thyroid problem for the runs which converged

Thyroid

Algorithm Epochs Time Generalization Convergence

Rprop 615 19:89� 12:4 98.12 87

IRprop 605 19:58� 12:1 98.12 87

GRprop 360 11:80� 2:5 98.23 100

A.D. Anastasiadis et al. / Neurocomputing 64 (2005) 253–270262
Results are given in Table 3. GRprop outperforms the other algorithms
particularly in training speed. Fig. 2 (right side) illustrates a case where GRprop
converges to a minimizer while Rprop gets stuck at a local minimizer with higher
error value.
The results in Table 4 show that average training speed and the corresponding

standard deviation of the Rprop and IRprop have increased when the results of all
the runs (100 cases) have been taken into account. This happens because the two
algorithms converge only 87 times out of the 100 runs (see Table 3). Nevertheless, the
performance of the GRprop appears significantly better: GRprop converges faster in
79 and 78 runs compared to the Rprop and the IRprop, respectively. Moreover, the
value of the deviation of the new algorithm is significantly lower than the standard
deviation of the other two methods (Table 4). In 27 runs, Rprop and IRprop achieve
better generalization than GRprop, which outperforms in 58 runs.

4.3. The cancer1 problem

This is a breast cancer diagnosis problem based on 9 inputs describing a tumour as
benign or malignant. The data set consists of 350 patterns. We have used a feed-
forward neural network with 9-4-2-2 nodes as suggested in the PROBEN1
benchmark collection and in [8]. The error goal in training was Eo0:02 to
harmonize with the training errors obtained in [8]. The results for this pattern
classification problem are summarized in Table 5. The new algorithm performs
significantly better than the other two methods. The differences between IRprop and
Rprop seems to be unimportant. Table 6 presents the number of times each
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Table 4

Number of times, out of 100 runs, each algorithm performs better than the other methods in the thyroid

problem with respect to training speed and generalization

Thyroid Times faster algorithm Times better generalization

Algorithm Rprop IRprop GRprop Time Rprop IRprop GRprop

Rprop — 26 21 25:7� 18:9 — 0 27

IRprop 74 — 22 25:3� 18:6 0 — 27

GRprop 79 78 — 11:8� 2:5 58 58 —

Table 5

Comparison of algorithms performance in the cancer problem for the runs which converged

Cancer

Algorithm Epochs Time Generalization Convergence

Rprop 187 1:3� 0:65 97.4 95

IRprop 185 1:2� 0:60 97.2 95

GRprop 127 0:9� 0:18 97.5 100

Table 6

Number of times, out of 100 runs, each algorithm performs better than the other methods in the cancer

problem with respect to training speed and generalization

Cancer Times faster algorithm Times better generalization

Algorithm Rprop IRprop GRprop Time Rprop IRprop GRprop

Rprop — 32 23 1:5� 1:73 — 1 23

IRprop 67 — 32 1:4� 1:67 0 — 23

GRprop 68 68 — 0:9� 0:18 25 26 —

A.D. Anastasiadis et al. / Neurocomputing 64 (2005) 253–270 263
algorithm outperforms the other methods in terms of training speed and general-
ization within 100 independent runs. It yields that the new learning scheme is
frequently faster and achieves better generalization than the other two members of
the Rprop family.

4.4. The diabetes1 problem

The aim of this real-world classification task is to decide when a Pima Indian
individual is diabetes positive or not. We have 8 inputs representing personal data
and results from a medical examination. The data set consists of 384 patterns. The
PROBEN1 collection proposes several architectures for this problem, including one
with 8-2-2-2 nodes. We decided to use this architecture as it was also suggested by
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Table 7

Comparison of algorithms performance in the diabetes problem for the runs which converged

Diabetes

Algorithm Epochs Time Generalization Convergence

Rprop 414 2:3� 2:3 75.5 97

IRprop 410 2:1� 2:1 75.4 97

GRprop 302 1:7� 0:6 75.7 100

Table 8

Number of times, out of 100 runs, each algorithm performs better than the other methods in the diabetes

problem with respect to training speed and generalization

Diabetes Times faster algorithm Times better generalization

Algorithm Rprop IRprop GRprop Time Rprop IRprop GRprop

Rprop — 49 38 4:8� 11:2 — 0 50

IRprop 48 — 45 4:7� 11:1 0 — 50

GRprop 51 50 — 1:7� 0:68 42 42 —

A.D. Anastasiadis et al. / Neurocomputing 64 (2005) 253–270264
others [8]. The error goal in this case was set at 0.14 to conform to the training error
obtained in [8].
Table 7 summarizes the performance of the tested algorithms. The increased

training speed (Time, in seconds) does not affect the generalization performance of
the new method. Table 8 gives an analytic view of the comparative results in the 100
trials. It is worth noting the standard deviation value of the GRprop is significantly
less than the corresponding Rprop and IRprop values, which means the GRprop
performance is closer to the average value.

4.5. The E. coli problem

This problem concerns the classification of protein localization patterns into eight
classes. A drastically imbalanced data set of 336 patterns is used, where there are
classes with 140 patterns and others with only 2 and 5 patterns.

E. coli, being a prokaryotic Gram-negative bacterium, is an important component
of the biosphere. It colonizes the lower gut of animals and survives, when realize
to the natural environment, allowing widespread to new hosts, as it is a faculties
anaerobe [3,10]. Three major and distinctive types of proteins are characterized
in E. coli: enzymes, transporters and regulators. The largest number of genes
encodes enzymes (34%) (this should include all the cytoplasm proteins), followed
by the genes for transport functions and the genes for regulatory proses (11.5%)
[9].
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For this problem, we have used seven different attributes as in [7,15,16]. The first
attribute is generated by applying McGeoch’s method for signal sequence
recognition. The second one is a result of the von Heijne’s method for signal
sequence recognition and the third one is the von Heijne’s signal peptidase II
consensus sequence score. The fourth attribute represents the presence of charge on
N-terminus of predicted lipoproteins. The fifth attribute is the score of discriminant
analysis of the amino-acid content of outer membrane and periplasmic proteins, and
the sixth one is the score of the ALOM membrane spanning region prediction
program. The last attribute gives the score of ALOM program after excluding
putative cleavable signal regions from the sequence.
In particular, protein patterns in the E. coli data set are organized as follows: 143

patterns of cytoplasm (cp), 77 of inner membrane without signal sequence (im), 52 of
periplasm (pp), 35 of inner membrane with uncleavable signal sequence (imU), 20 of
outer membrane without lipoprotein (om), 5 of outer membrane with lipoprotein
(omL), 2 of inner membrane with lipoprotein (imL) and 2 patterns of inner
membrane with cleavable signal sequence (imS).
The literature suggests no standard architecture for the E. coli problem. To get an

understanding of the requirements of problem, we conducted a set of preliminary
experiments to find the most suitable FNN architecture in terms of training speed. In
these experiments, the neural networks were tested using 4-fold cross validation, as
this approach has been used before in the literature for training probabilistic and
nearest neighbor classifiers in this problem [7]. We trained several networks with one
and two hidden layers using the Rprop algorithm. In particular, we tried various
combinations of hidden nodes, i.e. 8, 12, 14, 16, 24, 32, 64, 120 hidden nodes. Each
FNN architecture was trained 10 times with different initial weights. The best
available architecture found was a 7-16-8 FNN. Rprop-trained FNNs of this
architecture achieved better generalization than the best results reported in Ref. [7],
when the training error goal was Eo0:02 [1].
Results from 100 runs for three algorithms using the same architecture are given in

Table 9. A detailed account of the algorithms’ performance is exhibited in Table 10.
The new learning scheme is faster than Rprop and IRprop 54 and 95 times,
respectively. It is clear that there are no significant differences in the generalization
performance of the three algorithms.
Table 9

Comparison of algorithms performance in the E. coli problem for the runs which converged

E. coli

Algorithm Epochs Time Generalization Convergence

Rprop 130 1:25� 0:29 89.9 100

IRprop 128 1:15� 0:28 90.0 100

GRprop 120 1:0� 0:21 90.1 100
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Table 10

Number of times, out of 100 runs, each algorithm performs better than the other methods in the E. coli

problem with respect to training speed and generalization

E. coli Times faster algorithm Times better generalization

Algorithm Rprop IRprop GRprop Rprop IRprop GRprop

Rprop — 65 46 — 0 34

IRprop 31 — 4 0 — 33

GRprop 54 95 — 33 33 —
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4.6. The yeast problem

Saccharomyces cerevisiae (yeast) is the simplest Eukaryotic organism. Yeast, as a
more complicated form of life than E. coli, possesses different types of proteins
related to the cytoskeletal structure of the cell, the nucleus organization, membrane
transporters and metabolic-related proteins (as mitochondrial proteins). The yeast
membrane transporter proteins are of major importance as they are responsible for
nutrient uptake, drug resistance, salt tolerance, control of cell volume, efflux of
undesirable metabolites and sensing of extracellular nutrients [24].
In the yeast problem a pattern consists of 8 attributes [7,15,16]. The first attribute

is the result of the McGeoch’s method for signal sequence recognition. Applying the
von Heijne’s method for signal sequence recognition gives the second attribute. The
score of the ALOM membrane spanning region prediction program is the third
attribute and the score of discriminant analysis of the amino-acid content of the
N-terminal region (20 residues long) of mitochondrial and non-mitochondrial
proteins represents the fourth attribute. The fifth attribute is binary and indicates the
presence of ‘‘HDEL’’ substring (thought to act as a signal for retention in the
endoplasmic reticulum lumen). The value of the peroxisomal targeting signal in
the C-terminus is another attribute. The last two attributes of the yeast data
correspond to the score of discriminant analysis of the amino-acid content of
vacuolar and extracellular proteins, and the score of discriminant analysis of nuclear
localization signals of nuclear and non-nuclear proteins.
The data set is drastically imbalanced, and is organized as follows: there are 463

patterns of cytoplasm (cyt), 429 of nucleus (nuc), 244 of mitochondria (mit), 163 of
membrane protein without N-terminal signal (me3), 51 of membrane protein with
uncleavable signal (me2), 44 of membrane protein with cleavable signal (me1), 35 of
extracellular (exc), 30 of vacuole (vac), 20 of peroxisome (pox) and 5 patterns of
endoplasmic reticulum (erl).
We worked in a similar way to the E. coli problem to find a suitable architecture,

as there is no specific advice in the literature. We conducted a set of preliminary
experiments training several networks with one and two hidden layers using the
Rprop algorithm. Combinations of 8, 12, 14, 16, 24, 32, 64, 120 hidden nodes were
tried. Each FNN architecture was trained 10 times with different initial weights. The
best available architecture found was an 8-16-10 FNN, and this was used in the rest
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Table 11

Comparison of algorithms performance in the yeast problem for the runs which converged

Yeast

Algorithm Epochs Time Generalization Convergence

Rprop 805 28:4� 6:8 61.9 100

IRprop 799 27:7� 6:2 61.8 100

GRprop 750 25:1� 4:0 62.2 100

Table 12

Number of times, out of 100 runs, each algorithm performs better than the other methods in the yeast

problem with respect to training speed and generalization

Yeast Times faster algorithm Times better generalization

Algorithm Rprop IRprop GRprop Rprop IRprop GRprop

Rprop — 34 31 — 0 43

IRprop 65 — 35 0 — 43

GRprop 69 65 — 52 52 —
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of the experiments. In these experiments 10-fold cross validation was applied, as this
approach has been reported to produce higher generalization performance. Rprop-
trained FNNs that reached training errors Eo0:05 produced better generalization
on the average [1] than the best available classifier [7].
Comparative performance results are presented in Table 11. Table 12 shows the

results in detail.
5. Discussion

It is widely accepted that the Rprop algorithm is one of the best performing sign-
based learning algorithms for neural networks with arbitrary topology. The new
globally convergent batch training algorithm constitutes an efficient improvement of
the Rprop algorithm that is built on a theoretical basis. The GRprop has exhibited
significantly better convergence speed than Rprop and IRprop, in all cases tested.
Table 13 gives the summary of the results in terms of GRprop’s percentage of
improvement in training speed (in seconds) over Rprop and IRprop results.
The dimensionality of the search space seems to influence the performance of the

tested methods, although additional experiments are needed to extract definite
conclusions. The GRprop achieves improved results when the dimensionality of the
search space is not high (e.g. cancer, diabetes, and thyroid problems). When the
dimensionality ranges from medium to high there is still improvement as in the yeast
and genes problem (where the number of the weights is significantly larger than the
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Table 13

Summary of GRprop results in terms of learning speed improvement over Rprop and IRprop

Problem Dimensionality Rprop (%) IRprop (%)

Genes2 503 +4.7 +2.4

Thyroid 103 +40.7 +39.5

Cancer 56 +29.7 +28

Diabetes 30 +26.1 +23.5

E. coli 264 +20 +13.0

Yeast 314 +11.6 +9.4
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other problems). Moreover, the results of Table 13 are getting additional value when
we take into account that the GRprop has also exhibited better convergence success
in the majority of the 100 runs for all problems.
It is worth mentioning the high generalization performance of the Rprop-family in

the bioinformatics problems, namely E. coli and yeast. The three members of the
family produced on average results which are better than the ones reported in the
literature [7]. Also, it is important to mention that the GRprop converges faster in
both problems (see Tables 10 and 12). Finally, the standard deviation values in
Tables 10 and 12 point out that GRprop produces more consistent behavior than the
other algorithms.
6. Concluding remarks

In this paper, we have introduced a globally convergent modification of the Rprop
algorithm, named GRprop. We have provided a theoretical justification for its
development, and reported comparative results in six benchmark problems. In our
tests, GRprop has exhibited better convergence speed and stability than Rprop and
IRprop. There is of course the need to conduct further research into the performance
of GRprop in other pattern recognition problems and test exhaustively the method
in other classes of problems to fully explore its advantages and identify possible
limitations. Nevertheless, it is important to highlight the fact that GRprop
constitutes an efficient improvement of the original Rprop that builds on a
theoretical basis. This makes GRprop a potentially useful component of a global
optimization algorithms. That is an approach that we intend to investigate in the
near future.
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