Τμήμα Μαθηματικών | Πανεπιστήμιο Πατρών


Μηχανική Μάθηση
Περιγραφή

Μέρος Α: Θεωρία
(i) Επιβλεπόμενη μάθηση: Μηχανές Διανυσμάτων υποστήριξης, Ομάδες Μοντέλων, Βελτιστοποίηση παραμέτρων αλγορίθμων, Χειρισμός ανομοιογενών δεδομένων. (ii) Χρονοσειρές με χρήση αλγορίθμων παλινδρόμησης: Δέντρα προβλέψεων, Νευρωνικά Δίκτυα. (iii) Ημι-επιβλεπόμενη μάθηση: Αυτοεκπαιδεύομενα Μοντέλα, Ενεργητική Μάθηση. (iv) Χρήση αλγόριθμων μάθησης για Ταξινόμηση Κειμένων, Χρήση αλγόριθμων μάθησης για Ταξινόμηση Εικόνων, Χρήση αλγόριθμων μάθησης για αναγνώριση ομιλητή. (v) Βαθιά μάθηση: Συνελικτικά Νευρωνικά Δίκτυα, Αναδρομικά Νευρωνικά Δίκτυα. (vi) Ενισχυτική Μάθηση.

Μέρος Β: Εργαστήριο
Γλώσσα Python για την Επιστήμη των Δεδομένων, Χρήση Πακέτων της της Python: scikit-learn, orange, imbalanced-learn, pandas, statsmodels, h2o, libact, nltk, scikit-image, SpeechRecognition, tensorflow, keras, keras-rl.

Τομέας: Υπολογιστικών Μαθηματικών και Πληροφορικής
Συγγράμματα:

Πρόγραμμα Σπουδών:
MCDA
Εξάμηνο: Β
Πιστωτικές Μονάδες (ECTS): 7,5
Ωρες Διδασκαλίας (Θ/Φ/Ε): 1/0/1
Κωδικός: MCDA211
Φοιτητές Erasmus: Όχι




keyboard_arrow_up